Refine
Year of publication
- 2021 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Bacteria are true artists of survival, which rapidly adapt to environmental changes like pH shifts, temperature changes and different salinities. Upon osmotic shock, bacteria are able to counteract the loss of water by the uptake of potassium ions. In many bacteria, this is accomplished by the major K+ uptake system KtrAB. The system consists of the K+-translocating channel subunit KtrB, which forms a dimer in the membrane, and the cytoplasmic regulatory RCK subunit KtrA, which binds non-covalently to KtrB as an octameric ring. This unique architecture differs strongly from other RCK-gated K+ channels like MthK or GsuK, in which covalently tethered cytoplasmic RCK domains regulate a single tetrameric pore. As a consequence, an adapted gating mechanism is required: The activation of KtrAB depends on the binding of ATP and Mg2+ to KtrA, while ADP binding at the same site results in inactivation, mediated by conformational rearrangements. However, it is still poorly understood how the nucleotides are exchanged and how the resulting conformational changes in KtrA control gating in KtrB is still poorly understood.
Here,I present a 2.5-Å cryo-EM structure of ADP-bound, inactive KtrAB, which for the first time resolves the N termini of both KtrBs. They are located at the interface of KtrA and KtrB, forming a strong interaction network with both subunits. In combination with functional and EPR data we show that the N termini, surrounded by a lipidic environment, play a crucial role in the activation of the KtrAB system. We are proposing an allosteric network, in which an interaction of the N termini with the membrane facilitates MgATP-triggered conformational changes, leading to the active, conductive state.