Refine
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Communication-through-coherence (CTC) (1)
- Functional connectivity (1)
- Granger causality (1)
- Inter-areal coherence (1)
- Resonance (1)
- Source mixing (1)
- color vision (1)
- contextual modulation (1)
- efficient coding (1)
- gamma oscillations (1)
Institute
Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations
(2019)
The integration of direct bottom-up inputs with contextual information is a core feature of neocortical circuits. In area V1, neurons may reduce their firing rates when their receptive field input can be predicted by spatial context. Gamma-synchronized (30–80 Hz) firing may provide a complementary signal to rates, reflecting stronger synchronization between neuronal populations receiving mutually predictable inputs. We show that large uniform surfaces, which have high spatial predictability, strongly suppressed firing yet induced prominent gamma synchronization in macaque V1, particularly when they were colored. Yet, chromatic mismatches between center and surround, breaking predictability, strongly reduced gamma synchronization while increasing firing rates. Differences between responses to different colors, including strong gamma-responses to red, arose from stimulus adaptation to a full-screen background, suggesting prominent differences in adaptation between M- and L-cone signaling pathways. Thus, synchrony signaled whether RF inputs were predicted from spatial context, while firing rates increased when stimuli were unpredicted from context.
Inter-areal coherence has been hypothesized as a mechanism for inter-areal communication. Indeed, empirical studies have observed an increase in inter-areal coherence with attention. Yet, the mechanisms underlying changes in coherence remain largely unknown. Both attention and stimulus salience are associated with shifts in the peak frequency of gamma oscillations in V1, which suggests that the frequency of oscillations may play a role in facilitating changes in inter-areal communication and coherence. In this study, we used computational modeling to investigate how the peak frequency of a sender influences inter-areal coherence. We show that changes in the magnitude of coherence are largely determined by the peak frequency of the sender. However, the pattern of coherence depends on the intrinsic properties of the receiver, specifically whether the receiver integrates or resonates with its synaptic inputs. Because resonant receivers are frequency-selective, resonance has been proposed as a mechanism for selective communication. However, the pattern of coherence changes produced by a resonant receiver is inconsistent with empirical studies. By contrast, an integrator receiver does produce the pattern of coherence with frequency shifts in the sender observed in empirical studies. These results indicate that coherence can be a misleading measure of inter-areal interactions. This led us to develop a new measure of inter-areal interactions, which we refer to as Explained Power. We show that Explained Power maps directly to the signal transmitted by the sender filtered by the receiver, and thus provides a method to quantify the true signals transmitted between the sender and receiver. Together, these findings provide a model of changes in inter-areal coherence and Granger-causality as a result of frequency shifts.
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here we show in awake macaque area V1 that both, repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects showed some persistence on the timescale of minutes. Further, gamma increases were specific to the presented stimulus location. Importantly, repetition effects on gamma and on firing rates generalized to natural images. These findings suggest that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters, both for generating efficient stimulus responses and possibly for memory formation.
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.
Several recent studies investigated the rhythmic nature of cognitive processes that lead to perception and behavioral report. These studies used different methods, and there has not yet been an agreement on a general standard. Here, we present a way to test and quantitatively compare these methods. We simulated behavioral data from a typical experiment and analyzed these data with several methods. We applied the main methods found in the literature, namely sine-wave fitting, the discrete Fourier transform (DFT) and the least square spectrum (LSS). DFT and LSS can be applied both on the average accuracy time course and on single trials. LSS is mathematically equivalent to DFT in the case of regular, but not irregular sampling - which is more common. LSS additionally offers the possibility to take into account a weighting factor which affects the strength of the rhythm, such as arousal. Statistical inferences were done either on the investigated sample (fixed-effects) or on the population (random-effects) of simulated participants. Multiple comparisons across frequencies were corrected using False Discovery Rate, Bonferroni, or the Max-Based approach. To perform a quantitative comparison, we calculated sensitivity, specificity and D-prime of the investigated analysis methods and statistical approaches. Within the investigated parameter range, single-trial methods had higher sensitivity and D-prime than the methods based on the average accuracy time course. This effect was further increased for a simulated rhythm of higher frequency. If an additional (observable) factor influenced detection performance, adding this factor as weight in the LSS further improved sensitivity and D-prime. For multiple comparison correction, the Max-Based approach provided the highest specificity and D-prime, closely followed by the Bonferroni approach. Given a fixed total amount of trials, the random-effects approach had higher D-prime when trials were distributed over a larger number of participants, even though this gave less trials per participant. Finally, we present the idea of using a dampened sinusoidal oscillator instead of a simple sinusoidal function, to further improve the fit to behavioral rhythmicity observed after a reset event.
Several recent studies investigated the rhythmic nature of cognitive processes that lead to perception and behavioral report. These studies used different methods, and there has not yet been an agreement on a general standard. Here, we present a way to test and quantitatively compare these methods. We simulated behavioral data from a typical experiment and analyzed these data with several methods. We applied the main methods found in the literature, namely sine-wave fitting, the Discrete Fourier Transform (DFT) and the Least Square Spectrum (LSS). DFT and LSS can be applied both on the averaged accuracy time course and on single trials. LSS is mathematically equivalent to DFT in the case of regular, but not irregular sampling - which is more common. LSS additionally offers the possibility to take into account a weighting factor which affects the strength of the rhythm, such as arousal. Statistical inferences were done either on the investigated sample (fixed-effect) or on the population (random-effect) of simulated participants. Multiple comparisons across frequencies were corrected using False-Discovery-Rate, Bonferroni, or the Max-Based approach. To perform a quantitative comparison, we calculated Sensitivity, Specificity and D-prime of the investigated analysis methods and statistical approaches. Within the investigated parameter range, single-trial methods had higher sensitivity and D-prime than the methods based on the averaged-accuracy-time-course. This effect was further increased for a simulated rhythm of higher frequency. If an additional (observable) factor influenced detection performance, adding this factor as weight in the LSS further improved Sensitivity and D-prime. For multiple comparison correction, the Max-Based approach provided the highest Specificity and D-prime, closely followed by the Bonferroni approach. Given a fixed total amount of trials, the random-effect approach had higher D-prime when trials were distributed over a larger number of participants, even though this gave less trials per participant. Finally, we present the idea of using a dampened sinusoidal oscillator instead of a simple sinusoidal function, to further improve the fit to behavioral rhythmicity observed after a reset event.