Refine
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- HDAC (2)
- mTOR (2)
- prostate cancer (2)
- Biological markers (1)
- Chemokine CCL2 (1)
- Chemokines (1)
- Diagnosis (1)
- Prostatic neoplasms (1)
- adhesion (1)
- cdk (1)
Institute
- Medizin (11)
- Biowissenschaften (1)
Background: Single drug use has not achieved satisfactory results in the treatment of prostate cancer, despite application of increasingly widespread targeted therapeutics. In the present study, the combined impact of the mammalian target of rapamycin (mTOR)-inhibitor RAD001, the dual EGFr and VGEFr tyrosine kinase inhibitor AEE788 and the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on prostate cancer growth and adhesion in vitro was investigated. Methods: PC-3, DU-145 and LNCaP cells were treated with RAD001, AEE788 or VPA or with a RAD-AEE-VPA combination. Tumor cell growth, cell cycle progression and cell cycle regulating proteins were then investigated by MTT-assay, flow cytometry and western blotting, respectively. Furthermore, tumor cell adhesion to vascular endothelium or to immobilized extracellular matrix proteins as well as migratory properties of the cells was evaluated, and integrin alpha and beta subtypes were analyzed. Finally, effects of drug treatment on cell signaling pathways were determined. Results: All drugs, separately applied, reduced tumor cell adhesion, migration and growth. A much stronger anti-cancer effect was evoked by the triple drug combination. Particularly, cdk1, 2 and 4 and cyclin B were reduced, whereas p27 was elevated. In addition, simultaneous application of RAD001, AEE788 and VPA altered the membranous, cytoplasmic and gene expression pattern of various integrin alpha and beta subtypes, reduced integrin-linked kinase (ILK) and deactivated focal adhesion kinase (FAK). Signaling analysis revealed that EGFr and the downstream target Akt, as well as p70S6k was distinctly modified in the presence of the drug combination. Conclusions: Simultaneous targeting of several key proteins in prostate cancer cells provides an advantage over targeting a single pathway. Since strong anti-tumor properties became evident with respect to cell growth and adhesion dynamics, the triple drug combination might provide progress in the treatment of advanced prostate cancer.
Scientists who are members of an editorial board have been accused of preferentially publishing their scientific work in the journal where they serve as editor. Reputation and academic standing do depend on an uninterrupted flow of published scientific work and the question does arise as to whether publication mainly occurs in the self-edited journal. This investigation was designed to determine whether editorial board members of five urological journals were more likely to publish their research reports in their own rather than in other journals. A retrospective analysis was conducted for all original reports published from 2001–2010 by 65 editorial board members nominated to the boards of five impact leading urologic journals in 2006. Publications before editorial board membership, 2001–2005, and publications within the period of time as an editorial board member, 2006–2010, were identified. The impact factors of the journals were also recorded over the time period 2001–2010 to see whether a change in impact factor correlated with publication locality. In the five journals as a whole, scientific work was not preferentially published in the journal in which the scientists served as editor. However, significant heterogeneity among the journals was evident. One journal showed a significant increase in the amount of published papers in the ‘own’ journal after assumption of editorship, three journals showed no change and one journal showed a highly significant decrease in publishing in the ‘own’ journal after assumption of editorship.
This study was designed to investigate whether epigenetic modulation by histone deacetylase (HDAC) inhibition might circumvent resistance towards the mechanistic target of rapamycin (mTOR) inhibitor temsirolimus in a prostate cancer cell model. Parental (par) and temsirolimus-resistant (res) PC3 prostate cancer cells were exposed to the HDAC inhibitor valproic acid (VPA), and tumor cell adhesion, chemotaxis, migration, and invasion were evaluated. Temsirolimus resistance was characterized by reduced binding of PC3res cells to endothelium, immobilized collagen, and fibronectin, but increased adhesion to laminin, as compared to the parental cells. Chemotaxis, migration, and invasion of PC3res cells were enhanced following temsirolimus re-treatment. Integrin α and β receptors were significantly altered in PC3res compared to PC3par cells. VPA significantly counteracted temsirolimus resistance by down-regulating tumor cell–matrix interaction, chemotaxis, and migration. Evaluation of integrin expression in the presence of VPA revealed a significant down-regulation of integrin α5 in PC3res cells. Blocking studies demonstrated a close association between α5 expression on PC3res and chemotaxis. In this in vitro model, temsirolimus resistance drove prostate cancer cells to become highly motile, while HDAC inhibition reversed the metastatic activity. The VPA-induced inhibition of metastatic activity was accompanied by a lowered integrin α5 surface level on the tumor cells.
The mechanistic target of rapamycin (mTOR) is elevated in prostate cancer, making this protein attractive for tumor treatment. Unfortunately, resistance towards mTOR inhibitors develops and the tumor becomes reactivated. We determined whether epigenetic modulation by the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), may counteract non-responsiveness to the mTOR inhibitor, temsirolimus, in prostate cancer (PCa) cells. Prostate cancer cells, sensitive (parental) and resistant to temsirolimus, were exposed to VPA, and tumor cell growth behavior compared. Temsirolimus resistance enhanced the number of tumor cells in the G2/M-phase, correlating with elevated cell proliferation and clonal growth. The cell cycling proteins cdk1 and cyclin B, along with Akt-mTOR signaling increased, whereas p19, p21 and p27 decreased, compared to the parental cells. VPA significantly reduced cell growth and up-regulated the acetylated histones H3 and H4. Cdk1 and cyclin B decreased, as did phosphorylated mTOR and the mTOR sub-complex Raptor. The mTOR sub-member Rictor and phosphorylated Akt increased under VPA. Knockdown of cdk1, cyclin B, or Raptor led to significant cell growth reduction. HDAC inhibition through VPA counteracts temsirolimus resistance, probably by down-regulating cdk1, cyclin B and Raptor. Enhanced Rictor and Akt, however, may represent an undesired feedback loop, which should be considered when designing future therapeutic regimens.
Molecular tumour targeting has significantly improved anti-cancer protocols. Still, the addition of molecular targeting to the treatment regime has not led to a curative breakthrough. Combined mammalian target of Rapamycin (mTOR) and histone deacetylase (HDAC) inhibition has been shown not only to enhance anti-tumour potential, but also to prevent resistance development seen under mono-drug therapy. This investigation was designed to evaluate whether cross-communication exists between mTOR signalling and epigenetic events regulated by HDAC. DU-145 prostate cancer cells were treated with insulin-like growth factor (IGF) to activate the Akt-mTOR cascade or with the HDAC-inhibitor valproic acid (VPA) to induce histone H3 and H4 acetylation (aH3, aH4). Subsequently, mTOR, Rictor, Raptor, p70s6k, Akt (all: total and phosphorylated), H3 and H4 (total and acetylated) were analysed by western blotting. Both techniques revealed a link between mTOR and the epigenetic machinery. IGF activated mTOR, Rictor, Raptor, p70s6k and Akt, but also enhanced aH3 and aH4. Inversely, IGFr blockade and knock-down blocked the Akt-mTOR axis, but simultaneously diminished aH3 and aH4. VPA treatment up-regulated histone acetylation, but also activated mTOR-Akt signalling. HDAC1 and 2 knock-down revealed that the interaction with the mTOR system is initiated by histone H3 acetylation. HDAC-mTOR communication, therefore, is apparent whereby tumour-promoting (Akt/mTORhigh, aH3/aH4low) and tumour-suppressing signals (Akt/mTORlow, aH3/aH4high) are activated in parallel. Combined use of an HDAC- and mTOR inhibitor might then diminish pro-tumour effects triggered by the HDAC- (Akt/mTORhigh) or mTOR inhibitor (aH3/aH4low) alone.
Purpose: Prostate specific antigen is not reliable in diagnosing prostate cancer (PCa), making the identification of novel, precise diagnostic biomarkers important. Since chemokines are associated with more aggressive disease and poor prognosis in diverse malignancies, we aimed to investigate the diagnostic relevance of chemokines in PCa.
Materials and methods: Preoperative and early postoperative serum samples were obtained from 39 consecutive PCa patients undergoing radical prostatectomy. Serum from 15 healthy volunteers served as controls. Concentrations of CXCL12, CXCL13, CX3CL1, CCL2, CCL5, and CCL20 were measured in serum by Luminex. The expression activity of CXCR3, CXCR4, CXCR5, CXCR7, CXCL12, CXCL13, CX3CR1, CXCL1, CCR2, CCR5, CCR6, CCR7, CCL2, and CCL5 mRNA was assessed in tumor and adjacent normal tissue of prostatectomy specimens by quantitative real-time polymerase chain reaction. The associations of these chemokines with clinical and histological parameters were tested.
Results: The gene expression activity of CCL2 and CCR6 was significantly higher in tumor tissue compared to adjacent normal tissue. CCL2 was also significantly higher in the blood samples of PCa patients, compared to controls. CCL5, CCL20, and CX3CL1 were lower in patient serum, compared to controls. CCR2 tissue mRNA was negatively correlated with the Gleason score and grading.
Conclusion: Chemokines are significantly modified during tumorigenesis of PCa, and CCL2 is a promising diagnostic biomarker.
The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.
Targeted drugs have significantly improved the therapeutic options for advanced renal cell carcinoma (RCC). However, resistance often develops, negating the benefit of these agents. In the present study, the molecular mechanisms of acquired resistance towards the histone deacetylase (HDAC) inhibitor valproic acid (VPA) in a RCC in vivo model were investigated. NMRI:nu/nu mice were transplanted with Caki-1 RCC cells and then treated with VPA (200 mg/kg/day). Controls remained untreated. Based on tumor growth dynamics, the mice were divided into “responders” and “non-responders” to VPA. Histone H3 and H4 acetylation and expression of cell signaling and cell cycle regulating proteins in the RCC mouse tumors were evaluated by Western blotting. Tumor growth of VPA responders was significantly diminished, whereas that of VPA non-responders even exceeded control values. Cdk1, 2 and 4 proteins were strongly enhanced in the non-responders. Importantly, Akt expression and activity were massively up-regulated in the tumors of the VPA non-responders. Chronic application (12 weeks) of VPA to Caki-1 cells in vitro evoked a distinct elevation of Akt activity and cancer cells no longer responded with cell growth reduction, compared to the short 2 week treatment. We assume that chronic use of an HDAC-inhibitor is associated with (re)-activation of Akt, which may be involved in resistance development. Consequently, combined blockade of both HDAC and Akt may delay or prevent drug resistance in RCC.
The pathophysiologic mechanisms behind urologic disease are increasingly being elucidated. The object of this investigation was to evaluate the publication policies of urologic journals during a period of progressively better understanding and management of urologic disease. Based on the ISI Web of Knowledge Journal Citation Reports and the PubMed database, the number and percentage of original experimental, original clinical, review or commentarial articles published between 2002–2010 in six leading urologic journals were analyzed. “British Journal of Urology International”, “European Urology”, “Urologic Oncology-Seminars and Original Investigations” (“Urologic Oncology”), “Urology”, “The Journal of Urology”, and “World Journal of Urology” were chosen, because these journals publish articles in all four categories. The publication policies of the six journals were very heterogeneous during the time period from 2002 to 2010. The percentage of original experimental and original clinical articles, related to all categories, remained the same in “British Journal of Urology International”, “Urologic Oncology”, “Urology” and “The Journal of Urology”. The percentage of experimental reports in “World Journal of Urology” between 2002–2010 significantly increased from 10 to 20%. A distinct elevation in the percentage of commentarial articles accompanied by a reduction of clinical articles became evident in “European Urology” which significantly correlated with a large increase in the journal’s impact factor. No clearly superior policy could be identified with regard to a general increase in the impact factors from all the journals. The publication policy of urologic journals does not expressly reflect the increase in scientific knowledge, which has occurred over the period 2002–2010. One way of increasing the exposure of urologists to research and expand the interface between experimental and clinical research, would be to enlarge the percentage of experimental articles published. There is no indication that such policy would be detrimental to a journal’s impact factor.
Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25–10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.