Refine
Document Type
- Article (1)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
In this work we provided additional insights into our understanding of bulk QCD matter through the study of the transport coeffcients which govern the non-equilibrium microscopical processes of statistical ensembles. Specically, we focused on the low energy regime corresponding to the hadron gas, as the properties of this region of the phase diagram are still relatively unknown, and existing calculations for the transport coeffcients are either scarce, contradictory, or somewhat limited in scope; this thesis' main goal was thus to shed some light on this by providing new independent calculations of these quantities.
We subsequently presented two formalisms which can be used to calculate transport coeffcients. The first one (which also was the main tool we used in the following chapters to produce our results) relies on the development of so-called Green-Kubo formulas, which relate non-equilibrium dissipative fluctuations with transport coeffcients; notably, the off-diagonal components of the energy-momentum tensor are shown to be related to the shear viscosity, its diagonal components to the bulk viscosity and fluctuations in the electric current can be related to the electric conductivity. We additionally introduced two new conductivities, namely the baryon-electric and strange electric conductivities, which we dubbed, together with the already known electric one, the "cross-conductivity", which encodes information about how electric fluctuations are correlated to changes in electric, baryonic or strange currents, or vice-versa. The second way of calculating transport coeffcient which we discussed consists in linearizing the collision term of the Boltzmann equation through the Chapman-Enskog formalism. While in principle providing direct semi-analytical results for the transport coeffcients, this approach is complicated to implement when more than a few species are considered, and as such was then mostly used as a tool to calibrate our Green-Kubo calculations.
The hadron gas model that we used for all calculations, namely the transport approach SMASH, was then presented. The main features of the model were explained, such as the collision criterion, the considered degrees of freedom and the specific way in which they microscopically interact with each other. It was verified that SMASH does reproduce analytical results of the Boltzmann equation in an expanding universe scenario, thus showing the equivalence of this transport approach and the associated kinetic theory results. A special care was taken to detail the ways in which a state of thermal and chemical equilibrium (which is necessary for Green-Kubo relations to be valid) can be reached and described using SMASH.
...
Motivated by a recent finding of an exact solution of the relativistic Boltzmann equation in a Friedmann–Robertson–Walker spacetime, we implement this metric into the newly developed transport approach Simulating Many Accelerated Strongly-interacting Hadrons (SMASH). We study the numerical solution of the transport equation and compare it to this exact solution for massless particles. We also compare a different initial condition, for which the transport equation can be independently solved numerically. Very nice agreement is observed in both cases. Having passed these checks for the SMASH code, we study a gas of massive particles within the same spacetime, where the particle decoupling is forced by the Hubble expansion. In this simple scenario we present an analysis of the freeze-out times, as function of the masses and cross sections of the particles. The results might be of interest for their potential application to relativistic heavy-ion collisions, for the characterization of the freeze-out process in terms of hadron properties.
We describe two independent frameworks which provide unambiguous determinations of the deconfinement and the decoupling conditions of a relativistic gas at finite temperature. First, we use the Polyakov-Nambu-Jona–Lasinio model to compute meson and baryon masses at finite temperature and determine their melting temperature as a function of their strangeness content. Second, we analyze a simple expanding gas within a Friedmann-Robertson-Walker metric, which admits a well-defined decoupling mechanism. We examine the decoupling time as a function of the particle mass and cross section. We find evidences of an inherent dependence of the hadronization and freeze-out conditions on flavor, and on mass and cross section, respectively.