Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Comorbidity (1)
- Decision making (1)
- General practice (1)
- Goal-oriented care (1)
- Multimorbidity (1)
- Patient care planning (1)
- Patient preference (1)
- Patient-centered care (1)
- Primary care (1)
- accidental falls [MeSH] (1)
Institute
- Medizin (4)
Introduction: Multimorbidity is a major concern in primary care. Nevertheless, evidence of prevalence and patterns of multimorbidity, and their determinants, are scarce. The aim of this study is to systematically review studies of the prevalence, patterns and determinants of multimorbidity in primary care.
Methods: Systematic review of literature published between 1961 and 2013 and indexed in Ovid (CINAHL, PsychINFO, Medline and Embase) and Web of Knowledge. Studies were selected according to eligibility criteria of addressing prevalence, determinants, and patterns of multimorbidity and using a pretested proforma in primary care. The quality and risk of bias were assessed using STROBE criteria. Two researchers assessed the eligibility of studies for inclusion (Kappa = 0.86).
Results: We identified 39 eligible publications describing studies that included a total of 70,057,611 patients in 12 countries. The number of health conditions analysed per study ranged from 5 to 335, with multimorbidity prevalence ranging from 12.9% to 95.1%. All studies observed a significant positive association between multimorbidity and age (odds ratio [OR], 1.26 to 227.46), and lower socioeconomic status (OR, 1.20 to 1.91). Positive associations with female gender and mental disorders were also observed. The most frequent patterns of multimorbidity included osteoarthritis together with cardiovascular and/or metabolic conditions.
Conclusions: Well-established determinants of multimorbidity include age, lower socioeconomic status and gender. The most prevalent conditions shape the patterns of multimorbidity. However, the limitations of the current evidence base means that further and better designed studies are needed to inform policy, research and clinical practice, with the goal of improving health-related quality of life for patients with multimorbidity. Standardization of the definition and assessment of multimorbidity is essential in order to better understand this phenomenon, and is a necessary immediate step.
Health-related preferences of older patients with multimorbidity: the protocol for an evidence map
(2019)
Introduction: Interaction of conditions and treatments, complicated care needs and substantial treatment burden make patient–physician encounters involving multimorbid older patients highly complex. To optimally integrate patients’ preferences, define and prioritise realistic treatment goals and individualise care, a patient-centred approach is recommended. However, the preferences of older patients, who are especially vulnerable and frequently multimorbid, have not been systematically investigated with regard to their health status. The purpose of this evidence map is to explore current research addressing health-related preferences of older patients with multimorbidity, and to identify the knowledge clusters and research gaps.
Methods and analysis: To identify relevant research, we will conduct searches in the electronic databases MEDLINE, EMBASE, PsycINFO, PSYNDEX, CINAHL, Social Science Citation Index, Social Science Citation Index Expanded and the Cochrane library from their inception. We will check reference lists of relevant articles and carry out cited reference research (forward citation tracking). Two independent reviewers will screen titles and abstracts, check full texts for eligibility and extract the data. Any disagreement will be resolved and consensus reached with the help of a third reviewer. We will include both qualitative and quantitative studies, and address preferences from the patients’ perspectives in a multimorbid population of 60 years or older. There will be no restrictions on the publication language. Data extraction tables will present study and patient characteristics, aim of study, methods used to identify preferences and outcomes (ie, type of preferences). We will summarise the data using tables and figures (ie, bubble plot) to present the research landscape and to describe clusters and gaps.
Ethics and dissemination: Due to the nature of the proposed evidence map, ethics approval will not be required. Results from our research will be disseminated by means of specifically prepared materials for patients, at relevant (inter)national conferences and via publication in peer-reviewed journals.
Multimorbidity is a health issue mostly dealt with in primary care practice. As a result of their generalist and patient-centered approach, long-lasting relationships with patients, and responsibility for continuity and coordination of care, family physicians are particularly well placed to manage patients with multimorbidity. However, conflicts arising from the application of multiple disease oriented guidelines and the burden of diseases and treatments often make consultations challenging. To provide orientation in decision making in multimorbidity during primary care consultations, we developed guiding principles and named them after the Greek mythological figure Ariadne. For this purpose, we convened a two-day expert workshop accompanied by an international symposium in October 2012 in Frankfurt, Germany. Against the background of the current state of knowledge presented and discussed at the symposium, 19 experts from North America, Europe, and Australia identified the key issues of concern in the management of multimorbidity in primary care in panel and small group sessions and agreed upon making use of formal and informal consensus methods. The proposed preliminary principles were refined during a multistage feedback process and discussed using a case example. The sharing of realistic treatment goals by physicians and patients is at the core of the Ariadne principles. These result from i) a thorough interaction assessment of the patient’s conditions, treatments, constitution, and context; ii) the prioritization of health problems that take into account the patient's preferences – his or her most and least desired outcomes; and iii) individualized management realizes the best options of care in diagnostics, treatment, and prevention to achieve the goals. Goal attainment is followed-up in accordance with a re-assessment in planned visits. The occurrence of new or changed conditions, such as an increase in severity, or a changed context may trigger the (re-)start of the process. Further work is needed on the implementation of the formulated principles, but they were recognized and appreciated as important by family physicians and primary care researchers.
Background: Cumulative anticholinergic exposure, also known as anticholinergic burden, is associated with a variety of adverse outcomes. However, studies show that anticholinergic effects tend to be underestimated by prescribers, and anticholinergics are the most frequently prescribed potentially inappropriate medication in older patients. The grading systems and drugs included in existing scales to quantify anticholinergic burden differ considerably and do not adequately account for patients’ susceptibility to medications. Furthermore, their ability to link anticholinergic burden with adverse outcomes such as falls is unclear. This study aims to develop a prognostic model that predicts falls in older general practice patients, to assess the performance of several anticholinergic burden scales, and to quantify the added predictive value of anticholinergic symptoms in this context.
Methods: Data from two cluster-randomized controlled trials investigating medication optimization in older general practice patients in Germany will be used. One trial (RIME, n = 1,197) will be used for the model development and the other trial (PRIMUM, n = 502) will be used to externally validate the model. A priori, candidate predictors will be selected based on a literature search, predictor availability, and clinical reasoning. Candidate predictors will include socio-demographics (e.g. age, sex), morbidity (e.g. single conditions), medication (e.g. polypharmacy, anticholinergic burden as defined by scales), and well-being (e.g. quality of life, physical function). A prognostic model including sociodemographic and lifestyle-related factors, as well as variables on morbidity, medication, health status, and well-being, will be developed, whereby the prognostic value of extending the model to include additional patient-reported symptoms will be also assessed. Logistic regression will be used for the binary outcome, which will be defined as “no falls” vs. “≥1 fall” within six months of baseline, as reported in patient interviews. Discussion: As the ability of different anticholinergic burden scales to predict falls in older patients is unclear, this study may provide insights into their relative importance as well as into the overall contribution of anticholinergic symptoms and other patient characteristics. The results may support general practitioners in their clinical decision-making and in prescribing fewer medications with anticholinergic properties.