Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
We present the prototype of a regional climate system model based on the COSMO-CLM regional climate model coupled with several model components, analyze the performance of the couplings and present a strategy to find an optimum configuration with respect to computational costs and time to solution.
The OASIS3-MCT coupler is used to couple COSMO-CLM with two land surface models (CLM and VEG3D), a regional ocean model for the Mediterranean Sea (NEMO-MED12), two ocean models for the North and Baltic Sea (NEMO-NORDIC and TRIMNP+CICE) and the atmospheric component of an earth system model (MPI-ESM). We present a unified OASIS3-MCT interface which handles all couplings in a similar way, minimizes the model source code modifications and describes the physics and numerics of the couplings. Furthermore, we discuss solutions for specific regional coupling problems like handling of different domains, multiple usage of MCT interpolation library and efficient exchange of 3D fields.
A series of real-case simulations over Europe has been conducted and the computational performance of the couplings has been analyzed. The usage of the LUCIA tool of the OASIS3-MCT coupler enabled separation of the direct costs of: coupling, load imbalance and additional computations. The resulting limits for time to solution and costs are shown and the potential of further improvement of the computational efficiency is summarized for each coupling.
It was found that the OASIS3-MCT coupler keeps the direct coupling costs of communication and horizontal interpolation small in comparison with the costs of the additional computations and load imbalance for all investigated couplings. For the first time this could be demonstrated for an exchange of approximately 450 2D fields per time step necessary for the atmosphere-atmosphere coupling between COSMO-CLM and MPI-ESM.
A procedure for finding an optimum configuration for each of the couplings was developed considering the time to solution and costs of the simulations. The optimum configurations are presented for sequential and concurrent coupling layouts. The procedure applied can be regarded as independent on the specific coupling layout and coupling details.
We developed a coupled regional climate system model based on the CCLM regional climate model. Within this model system, using OASIS3-MCT as a coupler, CCLM can be coupled to two land surface models (the Community Land Model (CLM) and VEG3D), the NEMO-MED12 regional ocean model for the Mediterranean Sea, two ocean models for the North and Baltic seas (NEMO-NORDIC and TRIMNP+CICE) and the MPI-ESM Earth system model.
We first present the different model components and the unified OASIS3-MCT interface which handles all couplings in a consistent way, minimising the model source code modifications and defining the physical and numerical aspects of the couplings. We also address specific coupling issues like the handling of different domains, multiple usage of the MCT library and exchange of 3-D fields.
We analyse and compare the computational performance of the different couplings based on real-case simulations over Europe. The usage of the LUCIA tool implemented in OASIS3-MCT enables the quantification of the contributions of the coupled components to the overall coupling cost. These individual contributions are (1) cost of the model(s) coupled, (2) direct cost of coupling including horizontal interpolation and communication between the components, (3) load imbalance, (4) cost of different usage of processors by CCLM in coupled and stand-alone mode and (5) residual cost including i.a. CCLM additional computations.
Finally a procedure for finding an optimum processor configuration for each of the couplings was developed considering the time to solution, computing cost and parallel efficiency of the simulation. The optimum configurations are presented for sequential, concurrent and mixed (sequential+concurrent) coupling layouts. The procedure applied can be regarded as independent of the specific coupling layout and coupling details.
We found that the direct cost of coupling, i.e. communications and horizontal interpolation, in OASIS3-MCT remains below 7 % of the CCLM stand-alone cost for all couplings investigated. This is in particular true for the exchange of 450 2-D fields between CCLM and MPI-ESM. We identified remaining limitations in the coupling strategies and discuss possible future improvements of the computational efficiency.
So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°). The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.
The goal of limited area models (LAMs) is to downscale coarse-gridded general circulation model output to represent small-scale features of weather and climate. The LAM needs information from the driving coarse-gridded model passing through its lateral boundaries. The treatment of this information transfer causes inconsistencies between driving and nested models and, subsequently, issues in regional weather and climate simulations. This work examines errors arising from choices taken by the modeler (temporal update frequency of boundary data, spatial resolution jump, and numerical lateral boundary formulation) systematically in an idealized simulation environment. So-called Big-Brother Experiments were performed with the LAM COSMO-CLM (0.11° grid spacing). A baroclinic wave in a zonal channel was simulated over flat terrain with and without a Gaussian hill. The results reveal that the quality of the driving data, here represented by simulations only differing from the LAM simulations by reduced spatial resolution, dominates the performance of the nested model. Consequently, at the simulated mesoscale, the performance of the nested small-scale model simulations is weakly sensitive to the numerical lateral boundary formulation (Davies relaxation or the newly implemented, computationally less demanding Mesinger Eta-model formulation). The performance sensitivity to boundary update frequency and resolution jump is small when at least 6-hourly updates and a resolution jump factor of maximally six is used. Gaussian hill LAM simulations illustrated the strength of downscaling; they can represent small-scale features missing in the coarse-scale driving simulations. In the idealized simulation experiments, spectral nudging is not advisable as it imprints the driving models deficits on the nested simulation.