Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
Institute
Im Rahmen dieser Arbeit wurden verschiedene metabolische Anpassungsmechanismen des humanpathogenen Bakteriums Acinetobacter baumannii an seinen Wirt untersucht. Im ersten Teil wurde die Rolle von verschiedenen Trimethylammoniumverbindungen (Cholin, Glycinbetain und Carnitin) und den zugehörigen Aufnahmesystemen, sowie ihren Stoffwechselwegen während dieses Prozesses analysiert. Für die Analyse der Transportsysteme wurde eine markerlose Vierfachmutante (Δbcct) von A. baumannii generiert, sodass alle bekannten Transportsysteme für die genannten Verbindungen deletiert vorlagen. Wachstumsversuche mit dieser Mutante zeigten, dass es in A. baumannii keine weiteren Transporter für die Aufnahme von Cholin gibt, jedoch weitere primär aktive oder sekundär aktive Transporter für die Aufnahme von Glycinbetain. Weiterhin konnten innerhalb dieser Arbeit die KM-Werte der Transporter bestimmt werden. Verschiedene Virulenz- und Infektionsanalysen führten zu dem Schluss, dass die Transporter keine Rolle bei der Virulenz von A. baumannii spielen. In Genomanalysen konnten die Gene, die für die Enzyme des Oxidationsweges von Cholin zu Glycinbetain kodieren identifiziert werden (Cholin-Dehydrogenase (betA), GlycinbetainAldehyd-Dehydrogenase (betB) und ein potenzieller Regulator (betI)). Es wurden Deletionsmutanten innerhalb dieses Genclusters generiert, mit dessen Hilfe gezeigt werden konnte, dass Cholin unter Salzstress ausschließlich als Vorläufer für das kompatible Solut Glycinbetain fungiert und nicht als kompatibles Solut von A. baumannii genutzt werden kann. Virulenz- und Infektionsstudien mit den Deletionsmutanten zeigten, dass der Cholin-Oxidationsweg keine Rolle bei der Virulenz von A. baumannii spielt.
Die Cholin-Dehydrogenase BetA wurde zusätzlich in E. coli produziert und anschließend mittels NiNTA-Affinitätschromatographie aufgereinigt. Die biochemische Charakterisierung des Enzyms zeigte, dass BetA membranständig ist und die höchste Aktivität bei einem pH-Wert von 9,0 hat. Salze wie NaCl oder KCl hatten keinen Effekt auf die Aktivität des Enzyms, während Glutamat die Aktivität stimulierte.
Weiterhin konnte FAD als Cofaktor identifiziert werden und der KM-Wert ermittelt werden. Zudem konnte gezeigt werden, dass die Oxidation von Cholin zu Glycinbetain unter isoosmotischen Bedingungen zu einem Anstieg der ATP-Konzentration in A. baumannii-Zellsuspensionen führt und damit, dass Cholin als alternative Energiequelle genutzt wird. Das Phospholipid Phosphatidylcholin konnte als natürliche Cholinquelle identifiziert werden. Eine Rolle der Phospholipasen D bei der Abspaltung der Cholin-Kopfgruppe des Phosphatidylcholins konnte ausgeschlossen werden. Die Gene für die Oxidation von Cholin zu Glycinbetain werden ausschließlich in Anwesenheit von Cholin exprimiert, jedoch unabhängig von der extrazellulären Salzkonzentration. Diese Studien zeigten, dass der Cholin-Oxidationsweg eine Rolle in der metabolischen Adaptation von A. baumannii an den Wirt spielt. Phosphatidylcholin kann hier als natürliche Cholinquelle im Wirt genutzt werden, da die Wirtsmembranen aus bis zu 70 % Phosphatidylcholin bestehen. Transportstudien mit Carnitin führten zu dem Schluss, dass der Transporter Aci01347 aus A. baumannii neben Cholin ebenfalls Carnitin transportiert. Wachstumsversuche mit einer aci01347-Mutante bestätigen, dass Aci01347 essenziell für die Aufnahme und anschließende Verwertung von Carnitin als Kohlenstoffquelle ist. Es konnte weiterhin gezeigt werden, dass das Transportergen mit essenziellen Genen für den Carnitin-Abbau in einem Operon liegt. Für die Analyse des Abbauweges von Carnitin wurden markerlose Deletionsmutanten innerhalb des Operons generiert. In Wachstumsstudien mit diesen Mutanten konnte der Abbauweg aufgeklärt werden und der Regulator des Operons identifiziert werden. Carnitin wird hier über Trimethylamin und Malat-Semialdehyd zu D-Malat umgewandelt und anschließend über Pyruvat in den TCA-Zyklus eingespeist. Der Regulator wurde zusätzlich in E. coli produziert und mittels Ni-NTA-Affinitätschromatographie aufgereinigt. Mithilfe von EMSA-Studien konnte die Bindestelle des Regulators auf eine 634 Bp lange DNA-Sequenz stromaufwärts des CarnitinOperons eingegrenzt werden. Durch Transkriptomanalysen konnte gezeigt werden, dass bei Wachstum mit Acetylcarnitin, Carnitin und D-Malat die Expression des Carnitin-Operons induziert wurde. Darüber hinaus wurden die Gene konservierter Aromatenabbauwege wie z. B. des Homogentisatweges, des Phenylacetatweges und des Protocatechuat-Abbaus, verstärkt exprimiert. In G. mellonellaVirulenzstudien konnte eine Rolle des Abbaus von Carnitin bei der Virulenz von A. baumannii nachgewiesen werden. Zusätzlich konnte dieser Effekt dem entstehenden Trimethylamin zugesprochen werden...
The opportunistic pathogen Acinetobacter baumannii is able to grow on carnitine. The genes encoding the pathway for carnitine degradation to the intermediate malic acid are known but the transporter mediating carnitine uptake remained to be identified. The open reading frame HMPREF0010_01347 (aci01347) of Acinetobacter baumannii is annotated as a gene encoding a potential transporter of the betaine/choline/carnitine transporter (BCCT) family. To study the physiological function of Aci01347, the gene was deleted from A. baumannii ATCC 19606. The mutant was no longer able to grow on carnitine as sole carbon and energy source demonstrating the importance of this transporter for carnitine metabolism. Aci01347 was produced in Escherichia coli MKH13, a strain devoid of any compatible solute transporter, and the recombinant E. coli MKH13 strain was found to take up carnitine in an energy‐dependent fashion. Aci01347 also transported choline, a compound known to be accumulated under osmotic stress. Choline transport was osmolarity‐independent which is consistent with the absence of an extended C‐terminus found in osmo‐activated BCCT. We propose that the Aci01347 is the carnitine transporter mediating the first step in the growth of A. baumannii on carnitine.
Acinetobacter baumannii is outstanding for its ability to cope with low water activities and therefore its adaptation mechanism to osmotic stress. Here we report on the identification and characterization of five different secondary active compatible solute transporters, belonging to the betaine-choline-carnitine transporter (BCCT) family. Our studies revealed two choline-specific and three glycine betaine-specific BCCTs. Activity of the BCCTs was differentially dependent to the osmolality: one choline and one betaine transporter were osmostress-independent. Addition of choline to resting cells of Acinetobacter grown in the presence of the co-substrate choline or with phosphatidylcholine as sole carbon source led to ATP synthesis in the wild type but not in the BCCT quadruple mutant. This indicates that the BCCTs are essential to transport the energy substrate choline. The role of the different BCCTs in osmostress resistance and in metabolic adaptation of A. baumannii to the human host is discussed.
Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.
Acinetobacter baumannii is outstanding for its ability to cope with low water activities which significantly contributes to its persistence in hospital environments. The vast majority of bacteria are able to prevent loss of cellular water by amassing osmoactive compatible solutes or their precursors into the cytoplasm. One such precursor of an osmoprotectant is choline that is taken up from the environment and oxidized to the compatible solute glycine betaine. Here, we report the identification of the osmotic stress operon betIBA in A. baumannii. This operon encodes the choline oxidation pathway important for the production of the solute glycine betaine. The salt-sensitive phenotype of a betA deletion strain could not be rescued by addition of choline, which is consistent with the role of BetA in choline oxidation. We found that BetA is a choline dehydrogenase but also mediates in vitro the oxidation of glycine betaine aldehyde to glycine betaine. BetA was found to be associated with the membrane and to contain a flavin, indicative for BetA donating electrons into the respiratory chain. The choline dehydrogenase activity was not salt dependent but was stimulated by the compatible solute glutamate.
Acinetobacter baumannii is outstanding for its ability to cope with low water activities which significantly contributes to its persistence in hospital environments. The vast majority of bacteria are able to prevent loss of cellular water by amassing osmoactive compatible solutes or their precursors into the cytoplasm. One such precursor of an osmoprotectant is choline that is taken up from the environment and oxidized to the compatible solute glycine betaine. Here, we report the identification of the osmotic stress operon betIBA in A. baumannii. This operon encodes the choline oxidation pathway important for the production of the solute glycine betaine. The salt-sensitive phenotype of a betA deletion strain could not be rescued by addition of choline, which is consistent with the role of BetA in choline oxidation. We found that BetA is a choline dehydrogenase but also mediates in vitro the oxidation of glycine betaine aldehyde to glycine betaine. BetA was found to be associated with the membrane and to contain a flavin, indicative for BetA donating electrons into the respiratory chain. The choline dehydrogenase activity was not salt dependent but was stimulated by the compatible solute glutamate.