Refine
Year of publication
Language
- English (575)
Has Fulltext
- yes (575)
Is part of the Bibliography
- no (575)
Keywords
- BESIII (18)
- e +-e − Experiments (18)
- Branching fraction (9)
- Particle and Resonance Production (8)
- Charm Physics (7)
- Quarkonium (5)
- Spectroscopy (5)
- Branching fractions (4)
- Charmonium (4)
- QCD (4)
Institute
- Physik (573)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
Cross sections of the process 𝑒+𝑒−→𝜋0𝜋0𝐽/𝜓 at center-of-mass energies between 3.808 and 4.600 GeV are measured with high precision by using 12.4 fb−1 of data samples collected with the BESIII detector operating at the BEPCII collider facility. A fit to the measured energy-dependent cross sections confirms the existence of the charmoniumlike state 𝑌(4220). The mass and width of the 𝑌(4220) are determined to be (4220.4±2.4±2.3) MeV/𝑐2 and (46.2±4.7±2.1) MeV, respectively, where the first uncertainties are statistical and the second systematic. The mass and width are consistent with those measured in the process 𝑒+𝑒−→𝜋+𝜋−𝐽/𝜓. The neutral charmonium-like state 𝑍𝑐(3900)0 is observed prominently in the 𝜋0𝐽/𝜓 invariant-mass spectrum, and, for the first time, an amplitude analysis is performed to study its properties. The spin-parity of 𝑍𝑐(3900)0 is determined to be 𝐽𝑃=1+, and the pole position is (3893.1±2.2±3.0)−𝑖(22.2±2.6±7.0) MeV/𝑐2, which is consistent with previous studies of electrically charged 𝑍𝑐(3900)±. In addition, cross sections of 𝑒+𝑒− → 𝜋0𝑍𝑐(3900)0 → 𝜋0𝜋0𝐽/𝜓 are extracted, and the corresponding line shape is found to agree with that of the 𝑌(4220).
The Born cross sections of the e+e− → +¯ − and e+e− → −¯ + processes are determined for centerof-mass energy from 2.3864 to 3.0200 GeV with the BESIII detector. The cross section lineshapes can be described properly by a pQCD function and the resulting ratio of effective form factors for the + and − is consistent with 3. In addition, ratios of the + electric and magnetic form factors, |GE /GM |, are obtained at three center-of-mass energies through an analysis of the angular distributions. These measurements, which are studied for the first time in the off-resonance region, provide precision experimental input for understanding baryonic structure. The observed new features of the ± form factors require more theoretical discussions for the hyperons.
We study the decays of J/ψ and ψ(3686) to the final states Σ(1385)0Σ¯(1385)0 and Ξ0Ξ¯0 based on a single baryon tag method using data samples of (1310.6±7.0)×106 J/ψ and (447.9±2.9)×106 ψ(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σ¯(1385)0 are observed for the first time. The measured branching fractions of J/ψ and ψ(3686)→Ξ0Ξ¯0 are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σ¯(1385)0, α=−0.64±0.03±0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψ and ψ(3686)→ΞΞ¯ and Σ(1385)Σ¯(1385) systems are tested.
We report the first measurement of the absolute branching fraction for Λ+c→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data at a center-of-mass energy of s√=4.6 GeV collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λ+c→Λμ+νμ)=(3.49±0.46(stat)±0.27(syst))%. In addition, we calculate the ratio B(Λ+c→Λμ+νμ)/B(Λ+c→Λe+νe) to be 0.96±0.16(stat)±0.04(syst).
Measurements of cross section of e⁺e⁻ → pp¯π⁰ at center-of-mass energies between 4.008 and 4.600 GeV
(2017)
Based on e+e− annihilation data samples collected with the BESIII detector at the BEPCII collider at 13 center-of-mass energies from 4.008 to 4.600 GeV, measurements of the Born cross section of e+e− → pp¯π0 are performed. No significant resonant structure is observed in the measured energy dependence of the cross section. The upper limit on the Born cross section of e+e− → Y (4260) → pp¯π0 at the 90% C.L. is determined to be 0.01 pb. The upper limit on the ratio of the branching fractions B(Y (4260)→pp¯π0) B(Y (4260)→π+π− J/ψ) at the 90% C.L. is determined to be 0.02%.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+ → K0S K0S K +, D+ → K0S K0Sπ+, D0 → K0S K0S and D0 → K0S K0S K0S . They are determined to be B(D+ → K0S K0S K +) = (2.54 ± 0.05stat. ± 0.12sys.) × 10−3, B(D+ → K0S K0Sπ+) = (2.70 ± 0.05stat. ± 0.12sys.) × 10−3, B(D0 → K0S K0S ) = (1.67 ± 0.11stat. ± 0.11sys.) × 10−4 and B(D0 → K0S K0S K0S ) = (7.21 ± 0.33stat. ± 0.44sys.) × 10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
Using data samples collected with the BESIII detector at the BEPCII collider at six center-of-mass energies between 4.008 and 4.600 GeV, we observe the processes e+e− → φφω and e+e− → φφφ. The Born cross sections are measured and the ratio of the cross sections σ(e+e− → φφω)/σ(e+e− → φφφ) is estimated to be 1.75 ± 0.22 ± 0.19 averaged over six energy points, where the first uncertainty is statistical and the second is systematic. The results represent first measurements of these interactions.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→K0SK0SK+, D+→K0SK0Sπ+, D0→K0SK0S and D0→K0SK0SK0S. They are determined to be B(D+→K0SK0SK+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→K0SK0Sπ+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→K0SK0S)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→K0SK0SK0S)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→K0SK0SK+, D+→K0SK0Sπ+, D0→K0SK0S and D0→K0SK0SK0S. They are determined to be B(D+→K0SK0SK+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→K0SK0Sπ+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→K0SK0S)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→K0SK0SK0S)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
By analyzing 2.93 fb−1 data collected at the center-of-mass energy s√=3.773 GeV with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+→K¯0e+νe to be B(D+→K¯0e+νe)=(8.59±0.14±0.21)% using K¯0→K0S→π0π0, where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.