Refine
Year of publication
Has Fulltext
- yes (169)
Is part of the Bibliography
- no (169)
Keywords
- LHC (8)
- ALICE (3)
- ALICE experiment (3)
- Hadron-Hadron Scattering (3)
- pp collisions (3)
- Atmospheric science (2)
- Beauty production (2)
- Climate change (2)
- Diagnostik (2)
- Früherkennung (2)
Institute
- Physik (121)
- Frankfurt Institute for Advanced Studies (FIAS) (99)
- Informatik (99)
- Medizin (16)
- Geowissenschaften / Geographie (5)
- Georg-Speyer-Haus (3)
- Geowissenschaften (3)
- Biowissenschaften (2)
- Biochemie und Chemie (1)
- Senckenbergische Naturforschende Gesellschaft (1)
Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.
Plants, fungi and algae are important components of global biodiversity and are fundamental to all ecosystems. They are the basis for human well-being, providing food, materials and medicines. Specimens of all three groups of organisms are accommodated in herbaria, where they are commonly referred to as botanical specimens.The large number of specimens in herbaria provides an ample, permanent and continuously improving knowledge base on these organisms and an indispensable source for the analysis of the distribution of species in space and time critical for current and future research relating to global biodiversity. In order to make full use of this resource, a research infrastructure has to be built that grants comprehensive and free access to the information in herbaria and botanical collections in general. This can be achieved through digitization of the botanical objects and associated data.The botanical research community can count on a long-standing tradition of collaboration among institutions and individuals. It agreed on data standards and standard services even before the advent of computerization and information networking, an example being the Index Herbariorum as a global registry of herbaria helping towards the unique identification of specimens cited in the literature.In the spirit of this collaborative history, 51 representatives from 30 institutions advocate to start the digitization of botanical collections with the overall wall-to-wall digitization of the flat objects stored in German herbaria. Germany has 70 herbaria holding almost 23 million specimens according to a national survey carried out in 2019. 87% of these specimens are not yet digitized. Experiences from other countries like France, the Netherlands, Finland, the US and Australia show that herbaria can be comprehensively and cost-efficiently digitized in a relatively short time due to established workflows and protocols for the high-throughput digitization of flat objects.Most of the herbaria are part of a university (34), fewer belong to municipal museums (10) or state museums (8), six herbaria belong to institutions also supported by federal funds such as Leibniz institutes, and four belong to non-governmental organizations. A common data infrastructure must therefore integrate different kinds of institutions.Making full use of the data gained by digitization requires the set-up of a digital infrastructure for storage, archiving, content indexing and networking as well as standardized access for the scientific use of digital objects. A standards-based portfolio of technical components has already been developed and successfully tested by the Biodiversity Informatics Community over the last two decades, comprising among others access protocols, collection databases, portals, tools for semantic enrichment and annotation, international networking, storage and archiving in accordance with international standards. This was achieved through the funding by national and international programs and initiatives, which also paved the road for the German contribution to the Global Biodiversity Information Facility (GBIF).Herbaria constitute a large part of the German botanical collections that also comprise living collections in botanical gardens and seed banks, DNA- and tissue samples, specimens preserved in fluids or on microscope slides and more. Once the herbaria are digitized, these resources can be integrated, adding to the value of the overall research infrastructure. The community has agreed on tasks that are shared between the herbaria, as the German GBIF model already successfully demonstrates.We have compiled nine scientific use cases of immediate societal relevance for an integrated infrastructure of botanical collections. They address accelerated biodiversity discovery and research, biomonitoring and conservation planning, biodiversity modelling, the generation of trait information, automated image recognition by artificial intelligence, automated pathogen detection, contextualization by interlinking objects, enabling provenance research, as well as education, outreach and citizen science.We propose to start this initiative now in order to valorize German botanical collections as a vital part of a worldwide biodiversity data pool.
Positron creation in crossed-beam collisions of high-energy, fully stripped heavy ions is investigated within the coupled-channel formalism. In comparison with fixed-target collisions of highly stripped heavy-ion projectiles positron production probabilities are enhanced by more than one order of magnitude. The increase results from the possibility to excite electrons from the negative energy continuum into all bound states. The positron spectrum is shifted towards higher energies because of the absence of electron screening. Rutherford scattering as well as nuclear collisions with time delay are investigated. We also discuss the filling of empty bound states by electrons from pair-production processes.
Excitations of the atomic shell in heavy-ion collisions are influenced by the presence of a nuclear reaction. In the present Rapid Communication we point out the equivalence between a semiclassical description based on the nuclear autocorrelation function with an earlier model which employs a distribution of reaction times f(T). For the example of U+U collisions, results of coupled-channel calculations for positron creation and K-hole excitations are discussed for two schematic reaction models.
Atomic excitations are used to obtain information on the course of a nuclear reaction. Employing a semiclassical picture we calculate the emission of δ electrons and positrons in deep inelastic nuclear reactions for the example of U+U collisions incorporating nuclear trajectories resulting from two different nuclear friction models. The emission spectra exhibit characteristic deviations from those expected for elastic Coulomb scattering. The theoretical probabilities are compared with recent experimental data by Backe et al. A simple model is used to estimate the influence of a threebody breakup of the compound system upon atomic excitations.
Purpose: The aim of this official guideline coordinated and published by the German Society for Gynecology and Obstetrics (DGGG) and the German Cancer Society (DKG) was to optimize the screening, diagnosis, therapy and follow-up care of breast cancer.
Methods: The process of updating the S3 guideline dating from 2012 was based on the adaptation of identified source guidelines which were combined with reviews of evidence compiled using PICO (Patients/Interventions/Control/Outcome) questions and the results of a systematic search of literature databases and the selection and evaluation of the identified literature. The interdisciplinary working groups took the identified materials as their starting point to develop recommendations and statements which were modified and graded in a structured consensus procedure.
Recommendations: Part 1 of this short version of the guideline presents recommendations for the screening, diagnosis and follow-up care of breast cancer. The importance of mammography for screening is confirmed in this updated version of the guideline and forms the basis for all screening. In addition to the conventional methods used to diagnose breast cancer, computed tomography (CT) is recommended for staging in women with a higher risk of recurrence. The follow-up concept includes suggested intervals between physical, ultrasound and mammography examinations, additional high-tech diagnostic procedures, and the determination of tumor markers for the evaluation of metastatic disease.
Ziele: Das Ziel dieser offiziellen Leitlinie, die von der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) und der Deutschen Krebsgesellschaft (DKG) publiziert und koordiniert wurde, ist es, die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms zu optimieren.
Methoden: Der Aktualisierungsprozess der S3-Leitlinie aus 2012 basierte zum einen auf der Adaptation identifizierter Quellleitlinien und zum anderen auf Evidenzübersichten, die nach Entwicklung von PICO-(Patients/Interventions/Control/Outcome-)Fragen, systematischer Recherche in Literaturdatenbanken sowie Selektion und Bewertung der gefundenen Literatur angefertigt wurden. In den interdisziplinären Arbeitsgruppen wurden auf dieser Grundlage Vorschläge für Empfehlungen und Statements erarbeitet, die im Rahmen von strukturierten Konsensusverfahren modifiziert und graduiert wurden.
Empfehlungen: Der Teil 1 dieser Kurzversion der Leitlinie zeigt Empfehlungen zur Früherkennung, Diagnostik und Nachsorge des Mammakarzinoms: Der Stellenwert des Mammografie-Screenings wird in der aktualisierten Leitlinienversion bestätigt und bildet damit die Grundlage der Früherkennung. Neben den konventionellen Methoden der Karzinomdiagnostik wird die Computertomografie (CT) zum Staging bei höherem Rückfallrisiko empfohlen. Die Nachsorgekonzepte beinhalten Untersuchungsintervalle für die körperliche Untersuchung, Ultraschall und Mammografie, während weiterführende Gerätediagnostik und Tumormarkerbestimmungen bei der metastasierten Erkrankung Anwendung finden.
The demand to develop convergent technology platforms, such as bio-functionalized medical devices, is rapidly increasing. However, the loss of biological function of the effector molecules during sterilization represents a significant and general problem. Therefore, we have developed and characterized a nano-coating (NC) formulation capable of maintaining the functionality of proteins on biological-device combination products. As a proof of concept, the NC preserved the structural and functional integrity of an otherwise highly fragile antibody immobilized on polyurethane during deleterious sterilizing irradiation (≥ 25 kGy). The NC procedure enables straight-forward terminal sterilization of bio-functionalized materials while preserving optimal conditioning of the bioactive surface.
The performance of the electromagnetic calorimeter of the ALICE experiment during operation in 2010-2018 at the Large Hadron Collider is presented. After a short introduction into the design, readout, and trigger capabilities of the detector, the procedures for data taking, reconstruction, and validation are explained. The methods used for the calibration and various derived corrections are presented in detail. Subsequently, the capabilities of the calorimeter to reconstruct and measure photons, light mesons, electrons and jets are discussed. The performance of the calorimeter is illustrated mainly with data obtained with test beams at the Proton Synchrotron and Super Proton Synchrotron or in proton-proton collisions at s√=13 TeV, and compared to simulations.
The performance of the electromagnetic calorimeter of the ALICE experiment during operation in 2010–2018 at the Large Hadron Collider is presented. After a short introduction into the design, readout, and trigger capabilities of the detector, the procedures for data taking, reconstruction, and validation are explained. The methods used for the calibration and various derived corrections are presented in detail. Subsequently, the capabilities of the calorimeter to reconstruct and measure photons, light mesons, electrons and jets are discussed. The performance of the calorimeter is illustrated mainly with data obtained with test beams at the Proton Synchrotron and Super Proton Synchrotron or in proton-proton collisions at √s = 13 TeV, and compared to simulations.