Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- European beech (2)
- Fagaceae (1)
- Hi-C (1)
- SNP (1)
- SNPs (1)
- chromosomes (1)
- complete chloroplast genome (1)
- conservation genetics (1)
- genome architecture (1)
- genomics (1)
Similar to chloroplast loci, mitochondrial markers are frequently used for genotyping, phylogenetic studies, and population genetics, as they are easily amplified due to their multiple copies per cell. In a recent study, it was revealed that the chloroplast offers little variation for this purpose in central European populations of beech. Thus, it was the aim of this study to elucidate, if mitochondrial sequences might offer an alternative, or whether they are similarly conserved in central Europe. For this purpose, a circular mitochondrial genome sequence from the more than 300-year-old beech reference individual Bhaga from the German National Park Kellerwald-Edersee was assembled using long and short reads and compared to an individual from the Jamy Nature Reserve in Poland and a recently published mitochondrial genome from eastern Germany. The mitochondrial genome of Bhaga was 504,730 bp, while the mitochondrial genomes of the other two individuals were 15 bases shorter, due to seven indel locations, with four having more bases in Bhaga and three locations having one base less in Bhaga. In addition, 19 SNP locations were found, none of which were inside genes. In these SNP locations, 17 bases were different in Bhaga, as compared to the other two genomes, while 2 SNP locations had the same base in Bhaga and the Polish individual. While these figures are slightly higher than for the chloroplast genome, the comparison confirms the low degree of genetic divergence in organelle DNA of beech in central Europe, suggesting the colonisation from a common gene pool after the Weichsel Glaciation. The mitochondrial genome might have limited use for population studies in central Europe, but once mitochondrial genomes from glacial refugia become available, it might be suitable to pinpoint the origin of migration for the re-colonising beech population.
Growing amounts of genomic data and more efficient assembly tools advance organelle genomics at an unprecedented scale. Genomic resources are increasingly used for phylogenetic analyses of many plant species, but are less frequently used to investigate within-species variability and phylogeography. In this study, we investigated genetic diversity of Fagus sylvatica, an important broadleaved tree species of European forests, based on complete chloroplast genomes of 18 individuals sampled widely across the species distribution. Our results confirm the hypothesis of a low cpDNA diversity in European beech. The chloroplast genome size was remarkably stable (158,428 ± 37 bp). The polymorphic markers, 12 microsatellites (SSR), four SNPs and one indel, were found only in the single copy regions, while inverted repeat regions were monomorphic both in terms of length and sequence, suggesting highly efficient suppression of mutation. The within-individual analysis of polymorphisms showed >9k of markers which were proportionally present in gene and non-gene areas. However, an investigation of the frequency of alternate alleles revealed that the source of this diversity originated likely from nuclear-encoded plastome remnants (NUPTs). Phylogeographic and Mantel correlation analysis based on the complete chloroplast genomes exhibited clustering of individuals according to geographic distance in the first distance class, suggesting that the novel markers and in particular the cpSSRs could provide a more detailed picture of beech population structure in Central Europe.
The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.
The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 Mb and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb of the genome in which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome- wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.