Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Clinical competence (1)
- Flexible Endoscopic Evaluation of Swallowing (1)
- Genetics (1)
- Genome-wide association studies (1)
- Muscular diseases (1)
- Nervous system diseases (1)
- SARS-CoV-2 (1)
- Stroke (1)
- Viral infection (1)
Institute
- Medizin (2)
Neurogenic dysphagia is one of the most frequent and prognostically relevant neurological deficits in a variety of disorders, such as stroke, parkinsonism and advanced neuromuscular diseases. Flexible endoscopic evaluation of swallowing (FEES) is now probably the most frequently used tool for objective dysphagia assessment in Germany. It allows evaluation of the efficacy and safety of swallowing, determination of appropriate feeding strategies and assessment of the efficacy of different swallowing manoeuvres. The literature furthermore indicates that FEES is a safe and well-tolerated procedure. In spite of the huge demand for qualified dysphagia diagnostics in neurology, a systematic FEES education has not yet been established. The structured training curriculum presented in this article aims to close this gap and intends to enforce a robust and qualified FEES service. As management of neurogenic dysphagia is not confined to neurologists, this educational programme is applicable to other clinicians and speech–language therapists with expertise in dysphagia as well. The systematic education in carrying out FEES across a variety of different professions proposed by this curriculum will help to spread this instrumental approach and to improve dysphagia management.
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.