Refine
Document Type
- Article (17)
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- Guided waves (3)
- Doppler radar (2)
- composite structures (2)
- machine learning (2)
- signal processing (2)
- structural health monitoring (2)
- Atmosphere (1)
- CNC manufacturing (1)
- Design, synthesis and processing (1)
- Experimental testing (1)
Institute
- Physik (17)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Medizin (1)
This paper presents an imaging radar system for structural health monitoring (SHM) of wind turbine blades. The imaging radar system developed here is based on two frequency modulated continuous wave (FMCW) radar sensors with a high output power of 30 dBm. They have been developed for the frequency bands of 24,05 GHz-24,25 GHz and 33.4 GHz-36.0 GHz, respectively. Following the successful proof of damage detection and localization in laboratory conditions, we present here the installation of the sensor system at the tower of a 2 MW wind energy plant at 95 m above ground. The realization of the SHM-system will be introduced including the sensor system, the data acquisition framework and the signal processing procedures. We have achieved an imaging of the rotor blades using inverse synthetic aperture radar techniques under changing environmental and operational condition. On top of that, it was demonstrated that the front wall and back wall radar echo can be extracted from the measured signals demonstrating the full penetration of wind turbine blades during operation.
Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol's 31-element array configuration.
This work aims at radar sensors in the frequency band from 57 to 64 GHz that can be embedded in wind turbine blades during manufacturing, enabling non-destructive quality inspection directly after production and structural health monitoring (SHM) during the complete service life of the blade. In this paper, we show the fundamental damage detection capability of this sensor technology during fatigue testing of typical rotor blade materials. Therefore, a frequency modulated continuous wave (FMCW) radar sensor is used for damage diagnostics, and the results are validated by simultaneous camera recordings. Here, we focus on the failure modes delamination, fiber waviness (ondulation), and inter-fiber failure. For each failure mode, three samples have been designed and experimentally investigated during fatigue testing. A damage index has been proposed based on residual, that is, differential, signals exploiting measurements from pristine structural conditions. This study shows that the proposed innovative radar approach is able to detect continuous structural degradation for all failure modes by means of gradual signal changes.
This study presents an ultra-wideband, elliptical slot, planar monopole antenna for early breast cancer microwave imaging. The on-body antenna's operation is optimised by direct contact with the patient's skin. With a compact size of 9 × 7 mm, the antenna covers a wide bandwidth from 16 to 24 GHz for reflection coefficients lower than –10 dB. Besides, it also features an electrode for electrical impedance tomography applications. Verification on a volunteer's breast gives an excellent agreement with the simulation for the defined bandwidth. Furthermore, as the first stage of the system's characterisation, pork fat is also used to demonstrate the possibility to enhance the transmission between the antennas within the high loss environment. Those results propose the feasibility of implementing a high-frequency radar system for breast cancer detection.
This article demonstrates the use of guided elastic waves (GEW) for multiple-in and multiple-out (MIMO) data communication in the framework of a structural health monitoring (SHM) system. Therefore, miniaturized low-voltage communication nodes have been developed. They are arranged in a spatially distributed and permanently installed network. Wireless exchange of encoded information across a metallic plate and a stiffened carbon-fiber reinforced plastics (CFRP) structure is investigated. A combination of square-wave excitation sequences and frequency-division multiplexing (FDM) is explored for parallel communication with multiple nodes. Moreover, the impact of the excitation-sequence length on the reliability of information transmission is studied in view of future energy-aware application scenarios. The presented system achieves in both studied structures error-free transmission at a data rate of 0.17 kbps (per carrier frequency) with a power consumption of 224 mW.
The influence of temperature is regarded as particularly important for a structural health monitoring system based on ultrasonic guided waves. Since the temperature effect causes stronger signal changes than a typical defect, the former must be addressed and compensated for reliable damage assessment. Development of new temperature compensation techniques as well as the comparison of existing algorithms require high-quality benchmark measurements. This paper investigates a carbon fiber reinforced plastic (CFRP) plate that was fully characterized in previous research in terms of stiffness tensor and guided wave propagation. The same CFRP plate is used here for the analysis of the temperature effect for a wide range of ultrasound frequencies and temperatures. The measurement data are a contribution to the Open Guided Waves (OGW) platform: http://www.open-guided-waves.de. The technical validation includes initial results on the analysis of phase velocity variations with temperature and exemplary damage detection results using state-of-the-art signal processing methods that aim to suppress the temperature effect.
Radar technology in the millimeter-wave frequency band offers many interesting features for wind park surveillance, such as structural monitoring of rotor blades or the detection of bats and birds in the vicinity of wind turbines (WTs). Currently, the majority of WTs are affected by shutdown algorithms to minimize animal fatalities via direct collision with the rotor blades or barotrauma effects. The presence of rain is an important parameter in the definition of those algorithms together with wind speed, temperature, time of the day, and season of the year. A Ka-band frequency-modulated continuous-wave radar (33.4-36.0 GHz) installed at the tower of a 2-MW WT was used during a field study. We have observed characteristic rain-induced patterns, based on the range-Doppler algorithm. To better understand those signatures, we have developed a laboratory experiment and implemented a numerical modeling framework. Experimental and numerical results for rain detection and classification are presented and discussed here. Based on this article, a bat- and bird-friendly adaptive WT control can be developed for improved WT efficiency in periods of rain and, at the same time, reduced animal mortality.
Carbon-fiber-reinforced plastics are widely used in lightweight marine structures due to their high strength and superior fatigue behavior. In this article, we will present an innovative methodology for simultaneous load and structural monitoring of a carbon-fiber-reinforced plastic rudder stock as part of a big commercial vessel. Experimental results are presented here from a quasi-static tensile test in which the load monitoring is performed using embedded strain sensors. Structural monitoring is based on high-frequency electromechanical impedance spectroscopy combined with dedicated signal processing and surface-mounted piezoelectric transducers. We have achieved the following results: (1) the demonstration of a hybrid monitoring system including load and structural monitoring, (2) successful embedding of strain gauges during composite manufacturing of the carbon-fiber-reinforced plastic rudder stock, (3) development of instrumentation hardware for multichannel electromechanical impedance measurements, and (4) successful damage detection by means of electromechanical impedance spectroscopy in thick carbon-fiber-reinforced plastic rudder stock samples exploiting strain data.
Ultrasonic guided waves have been used successfully in structural health monitoring systems to detect damage in isotropic and composite materials with simple and complex geometry. A limitation of current research is given by a lack of freely available benchmark measurements to comparatively evaluate existing methods. This article introduces the extendable online platform Open Guided Waves (http://www.open-guided-waves.de) where high-quality and well-documented datasets for guided wave-based inspections are provided. In this article, we describe quasi-isotropic carbon-fiber-reinforced polymer plates with embedded piezoelectric transducers as a first benchmark structure. Intentionally, this is a structure of medium complexity to enable many researchers to apply their methods. In a first step, ultrasound and X-ray measurements were acquired to verify pristine conditions. Next, mechanical testing was done to determine the stiffness tensor and sample density based on standard test procedures. Guided wave measurements were divided into two parts: first, acoustic wave fields were acquired for a broad range of frequencies by three-dimensional scanning laser Doppler vibrometry. Second, structural health monitoring measurements in the carbon-fiber-reinforced polymer plate were collected at constant temperature using a distributed transducer network and a surface-mounted reversible defect model. Initial results serving as validation are presented and discussed.
Hemispherical and cylindrical antenna arrays are widely used in radar-based and tomography-based microwave breast imaging systems. Based on the dielectric contrast between healthy and malignant tissue, a three-dimensional image could be formed to locate the tumor. However, conventional X-ray mammography as the golden standard in breast cancer screening produces two-dimensional breast images so that a comparison between the 3D microwave image and the 2D mammogram could be difficult. In this paper, we present the design and realisation of a UWB breast imaging prototype for the frequency band from 1 to 9 GHz. We present a refined system design in light of the clinical usage by means of a planar scanning and compare microwave images with those obtained by X-ray mammography. Microwave transmission measurements were processed to create a two-dimensional image of the breast that can be compared directly with a two-dimensional mammogram. Preliminary results from a patient study are presented and discussed showing the ability of the proposed system to locate the tumor.