Refine
Year of publication
Document Type
- Article (17)
- Contribution to a Periodical (1)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Entscheidungsassistenz (2)
- Environmental support (2)
- MCI (2)
- Medical consultation (2)
- Patient needs (2)
- Patientenbedürfnisse (2)
- Person-Umwelt-Passung (2)
- Person-environment fit (2)
- Supported decision making (2)
- Unterstützung der Umwelt (2)
Institute
- Medizin (17)
- Erziehungswissenschaften (2)
- Psychologie (2)
- Sportwissenschaften (2)
- Präsidium (1)
- Universität des 3. Lebensalters e.V. (1)
Background: The progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD) dementia can be predicted by cognitive, neuroimaging, and cerebrospinal fluid (CSF) markers. Since most biomarkers reveal complementary information, a combination of biomarkers may increase the predictive power. We investigated which combination of the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR)-sum-of-boxes, the word list delayed free recall from the Consortium to Establish a Registry of Dementia (CERAD) test battery, hippocampal volume (HCV), amyloid-beta1–42 (Aβ42), amyloid-beta1–40 (Aβ40) levels, the ratio of Aβ42/Aβ40, phosphorylated tau, and total tau (t-Tau) levels in the CSF best predicted a short-term conversion from MCI to AD dementia.
Methods: We used 115 complete datasets from MCI patients of the "Dementia Competence Network", a German multicenter cohort study with annual follow-up up to 3 years. MCI was broadly defined to include amnestic and nonamnestic syndromes. Variables known to predict progression in MCI patients were selected a priori. Nine individual predictors were compared by receiver operating characteristic (ROC) curve analysis. ROC curves of the five best two-, three-, and four-parameter combinations were analyzed for significant superiority by a bootstrapping wrapper around a support vector machine with linear kernel. The incremental value of combinations was tested for statistical significance by comparing the specificities of the different classifiers at a given sensitivity of 85%.
Results: Out of 115 subjects, 28 (24.3%) with MCI progressed to AD dementia within a mean follow-up period of 25.5 months. At baseline, MCI-AD patients were no different from stable MCI in age and gender distribution, but had lower educational attainment. All single biomarkers were significantly different between the two groups at baseline. ROC curves of the individual predictors gave areas under the curve (AUC) between 0.66 and 0.77, and all single predictors were statistically superior to Aβ40. The AUC of the two-parameter combinations ranged from 0.77 to 0.81. The three-parameter combinations ranged from AUC 0.80–0.83, and the four-parameter combination from AUC 0.81–0.82. None of the predictor combinations was significantly superior to the two best single predictors (HCV and t-Tau). When maximizing the AUC differences by fixing sensitivity at 85%, the two- to four-parameter combinations were superior to HCV alone.
Conclusion: A combination of two biomarkers of neurodegeneration (e.g., HCV and t-Tau) is not superior over the single parameters in identifying patients with MCI who are most likely to progress to AD dementia, although there is a gradual increase in the statistical measures across increasing biomarker combinations. This may have implications for clinical diagnosis and for selecting subjects for participation in clinical trials.
Memory Concerns, Memory Performance and Risk of Dementia in Patients with Mild Cognitive Impairment
(2014)
Background: Concerns about worsening memory (“memory concerns”; MC) and impairment in memory performance are both predictors of Alzheimer's dementia (AD). The relationship of both in dementia prediction at the pre-dementia disease stage, however, is not well explored. Refined understanding of the contribution of both MC and memory performance in dementia prediction is crucial for defining at-risk populations. We examined the risk of incident AD by MC and memory performance in patients with mild cognitive impairment (MCI).
Methods: We analyzed data of 417 MCI patients from a longitudinal multicenter observational study. Patients were classified based on presence (n = 305) vs. absence (n = 112) of MC. Risk of incident AD was estimated with Cox Proportional-Hazards regression models.
Results: Risk of incident AD was increased by MC (HR = 2.55, 95%CI: 1.33–4.89), lower memory performance (HR = 0.63, 95%CI: 0.56–0.71) and ApoE4-genotype (HR = 1.89, 95%CI: 1.18–3.02). An interaction effect between MC and memory performance was observed. The predictive power of MC was greatest for patients with very mild memory impairment and decreased with increasing memory impairment.
Conclusions: Our data suggest that the power of MC as a predictor of future dementia at the MCI stage varies with the patients' level of cognitive impairment. While MC are predictive at early stage MCI, their predictive value at more advanced stages of MCI is reduced. This suggests that loss of insight related to AD may occur at the late stage of MCI.
BACKGROUND: hysical activity exerts a variety of long-term health benefits in older adults. In particular, it is assumed to be a protective factor against cognitive decline and dementia.
METHODS/DESIGN: Randomised controlled assessor blinded 2-armed trial (n = 60) to explore the exercise- induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age ≥ 65), recruited within the setting of assisted living facilities and newspaper advertisements are allocated to a 12-week individualised aerobic exercise programme intervention or a 12-week waiting control group. Total follow-up is 24 weeks. The main outcome is the change in cerebral metabolism as assessed with Magnetic Resonance Spectroscopic Imaging reflecting changes of cerebral N-acetyl-aspartate and of markers of neuronal energy reserve. Imaging also measures changes in cortical grey matter volume. Secondary outcomes include a broad range of psychometric (cognition) and movement-related parameters such as nutrition, history of physical activity, history of pain and functional diagnostics. Participants are allocated to either the intervention or control group using a computer-generated randomisation sequence. The exercise physiologist in charge of training opens sealed and opaque envelopes and informs participants about group allocation. For organisational reasons, he schedules the participants for upcoming assessments and exercise in groups of five. All assessors and study personal other than exercise physiologists are blinded.
DISCUSSION: Magnetic Resonance Spectroscopic Imaging gives a deeper insight into mechanisms of exercise-induced changes in brain metabolism. As follow-up lasts for 6 months, this study is able to explore the mid-term cerebral metabolic effects of physical activity assuming that an individually tailored aerobic ergometer training has the potential to counteract brain ageing.
NCT02343029 (clinicaltrials.gov; 12 January 2015).
There is mounting evidence that aerobic exercise has a positive effect on cognitive functions in older adults. To date, little is known about the neurometabolic and molecular mechanisms underlying this positive effect. The present study used magnetic resonance spectroscopy and quantitative MRI to systematically explore the effects of physical activity on human brain metabolism and grey matter (GM) volume in healthy aging. This is a randomised controlled assessor-blinded two-armed trial (n=53) to explore exercise-induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age >65) were allocated to a 12-week individualised aerobic exercise programme intervention (n=29) or a 12-week waiting control group (n=24). The main outcomes were the change in cerebral metabolism and its association to brain-derived neurotrophic factor (BDNF) levels as well as changes in GM volume. We found that cerebral choline concentrations remained stable after 12 weeks of aerobic exercise in the intervention group, whereas they increased in the waiting control group. No effect of training was seen on cerebral N-acetyl-aspartate concentrations, nor on markers of neuronal energy reserve or BDNF levels. Further, we observed no change in cortical GM volume in response to aerobic exercise. The finding of stable choline concentrations in the intervention group over the 3 month period might indicate a neuroprotective effect of aerobic exercise. Choline might constitute a valid marker for an effect of aerobic exercise on cerebral metabolism in healthy aging.
Background: Autobiographical memory (AM) changes are the hallmark of Alzheimer's disease (AD) and mild cognitive impairment (MCI). In recent neuroimaging studies, AM changes have been associated with numerous cerebral sites, such as the frontal cortices, the mesial temporal lobe, or the posterior cingulum. Regional glucose uptake in these sites was investigated for underlying subdimensions using factor analysis. Subsequently, the factors were examined with respect to AM performance in a subgroup of patients.
Methods: Data from 109 memory clinic referrals, who presented with MCI (n = 60), mild AD (n = 49), or were cognitively intact, were analyzed. The glucose metabolic rates determined by positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) in 34 cerebral sites important for AM were investigated for underlying subdimensions by calculating factor analysis with varimax rotation. Subsequently, the respective factor scores were correlated with the episodic and semantic AM performance of 22 patients, which was measured with a semi-structured interview assessing episodic memories (characterized by event-related emotional, sensory, contextual, and spatial–temporal details) and personal semantic knowledge from three periods of life (primary school, early adulthood, and recent years).
Results: Factor analysis identified seven factors explaining 69% of the variance. While patients with MCI and AD showed lower values than controls on the factors frontal cortex, mesial temporal substructures, and occipital cortex, patients with MCI presented with increased values on the factors posterior cingulum and left temporo-prefrontal areas. The factors anterior cingulum and right temporal cortex showed only minor, non-significant group differences. Solely, the factor mesial temporal substructures was significantly correlated with both episodic memories (r = 0.424, p < 0.05) and personal semantic knowledge (r = 0.547, p < 0.01) in patients with MCI/AD.
Conclusions: The factor structure identified corresponds by large to the morphological and functional interrelations of the respective sites. While reduced glucose uptake on the factors frontal cortex, mesial temporal substructures, and occipital cortex in the patient group may correspond to neurodegenerative changes, increased values on the factors posterior cingulum and left temporo-prefrontal areas in MCI may result from compensatory efforts. Interestingly, changes of the mesial temporal substructures were correlated with both semantic and episodic AM. Our findings suggest that AM deficits do not only reflect neurodegenerative changes but also refer to compensatory mechanisms as they involve both quantitative losses of specific memories and qualitative changes with a semantization of memories.
Microstructural abnormalities in white matter (WM) are often reported in Alzheimer’s disease (AD) and may reflect primary or secondary circuitry degeneration (i.e., due to cortical atrophy). The interpretation of diffusion tensor imaging (DTI) eigenvectors, known as multiple indices, may provide new insights into the main pathological models supporting primary or secondary patterns of WM disruption in AD, the retrogenesis, and Wallerian degeneration models, respectively. The aim of this review is to analyze the current literature on the contribution of DTI multiple indices to the understanding of AD neuropathology, taking the retrogenesis model as a reference for discussion. A systematic review using MEDLINE, EMBASE, and PUBMED was performed. Evidence suggests that AD evolves through distinct patterns of WM disruption, in which retrogenesis or, alternatively, the Wallerian degeneration may prevail. Distinct patterns of WM atrophy may be influenced by complex interactions which comprise disease status and progression, fiber localization, concurrent risk factors (i.e., vascular disease, gender), and cognitive reserve. The use of DTI multiple indices in addition to other standard multimodal methods in dementia research may help to determine the contribution of retrogenesis hypothesis to the understanding of neuropathological hallmarks that lead to AD.
Alzheimeŕs disease (AD) represents the most prevalent neurodegenerative disorder that causes cognitive decline in old age. In its early stages, AD is associated with microstructural abnormalities in white matter (WM). In the current study, multiple indices of diffusion tensor imaging (DTI) and brain volumetric measurements were employed to comprehensively investigate the landscape of AD pathology. The sample comprised 58 individuals including cognitively normal subjects (controls), amnestic mild cognitive impairment (MCI) and AD patients. Relative to controls, both MCI and AD subjects showed widespread changes of anisotropic fraction (FA) in the corpus callosum, cingulate and uncinate fasciculus. Mean diffusivity and radial changes were also observed in AD patients in comparison with controls. After controlling for the gray matter atrophy the number of regions of significantly lower FA in AD patients relative to controls was decreased; nonetheless, unique areas of microstructural damage remained, e.g., the corpus callosum and uncinate fasciculus. Despite sample size limitations, the current results suggest that a combination of secondary and primary degeneration occurrs in MCI and AD, although the secondary degeneration appears to have a more critical role during the stages of disease involving dementia.
White matter microstructural changes and episodic memory disturbances in late-onset bipolar disorder
(2018)
Background: Bipolar disorder (BD) has been associated with distributed network disruption, but little is known on how different clinical subtypes, particularly those with an earlier and later onset of disease, are related to connectivity changes in white matter (WM) tracts.
Methods: Diffusion tensor imaging (DTI) and volumetric measures were carried out in early-onset bipolar patients [(EOD) (n = 16)], late-onset bipolar disorder [(LOD)(n = 14)] and healthy controls (n = 32). We also computed ROI analysis of gray matter (GM) and white matter (WM) volumes using the regions with significant group differences in the DTI parameters. Cognitive and behavior measurements were analyzed between groups.
Results: Lower fraction of anisotropy (FA) in the right hemisphere comprising anterior thalamic radiation, fornix, posterior cingulate, internal capsule, splenium of corpus callosum was observed in the LOD in comparison with EOD; additionally, lower FA was also found in the LOD in comparison with healthy controls, mostly in the right hemisphere and comprising fibers of the splenium of the corpus callosum, cingulum, superior frontal gyrus and posterior thalamic radiation; LOD also showed worse episodic memory performance than EOD; no statistical significant differences between mood symptoms, WM and GM volumes were found between BD groups.
Conclusion: Even after correcting for age differences, LOD was associated with more extensive WM microstructural changes and worse episodic memory performance than EOD; these findings suggest that changes in the WM fiber integrity may be associated with a later presentation of BD, possibly due to mechanisms other than neuroprogression. However, these findings deserve replication in larger, prospective, studies.
Introduction Complex psychopathological and behavioral symptoms, such as delusions and aggression against care providers, are often the primary cause of acute hospital admissions of elderly patients to emergency units and psychiatric departments. This issue resembles an interdisciplinary clinically highly relevant diagnostic and therapeutic challenge across many medical subjects and general practice. At least 50% of the dramatically growing number of patients with dementia exerts aggressive and agitated symptoms during the course of clinical progression, particularly at moderate clinical severity. Methods Commonly used rating scales for agitation and aggression are reviewed and discussed. Furthermore, we focus in this article on benefits and limitations of all available data of anticonvulsants published in this specific indication, such as valproate, carbamazepine, oxcarbazepine, lamotrigine, gabapentin and topiramate. Results To date, most positive and robust data are available for carbamazepine, however, pharmacokinetic interactions with secondary enzyme induction limit its use. Controlled data of valproate do not seem to support the use in this population. For oxcarbazepine only one controlled but negative trial is available. Positive small series and case reports have been reported for lamotrigine, gabapentin and topiramate. Conclusions So far, data of anticonvulsants in demented patients with behavioral disturbances are not convincing. Controlled clinical trials using specific, valid and psychometrically sound instruments of newer anticonvulsants with a better tolerability profile are mandatory to verify whether they can contribute as treatment option in this indication.
In healthy older adults, resveratrol supplementation has been shown to improve long-term glucose control, resting-state functional connectivity (RSFC) of the hippocampus, and memory function. Here, we aimed to investigate if these beneficial effects extend to individuals at high-risk for dementia, i.e., patients with mild cognitive impairment (MCI). In a randomized, double-blind interventional study, 40 well-characterized patients with MCI (21 females; 50–80 years) completed 26 weeks of resveratrol (200 mg/d; n = 18) or placebo (1,015 mg/d olive oil; n = 22) intake. Serum levels of glucose, glycated hemoglobin A1c and insulin were determined before and after intervention. Moreover, cerebral magnetic resonance imaging (MRI) (3T) (n = 14 vs. 16) was conducted to analyze hippocampus volume, microstructure and RSFC, and neuropsychological testing was conducted to assess learning and memory (primary endpoint) at both time points. In comparison to the control group, resveratrol supplementation resulted in lower glycated hemoglobin A1c concentration with a moderate effect size (ANOVARM p = 0.059, Cohen's d = 0.66), higher RSFC between right anterior hippocampus and right angular cortex (p < 0.001), and led to a moderate preservation of left anterior hippocampus volume (ANOVARM p = 0.061, Cohen's d = 0.68). No significant differences in memory performance emerged between groups. This proof-of-concept study indicates for the first-time that resveratrol intake may reduce glycated hemoglobin A1c, preserves hippocampus volume, and improves hippocampus RSFC in at-risk patients for dementia. Larger trials with longer intervention time should now determine if these benefits can be validated and extended to cognitive function.