Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Kagome systems (1)
- magnetic frustration (1)
- organic compounds (1)
- quantum spin frustration (1)
- quantum spin liquids (1)
- thermal expansion (1)
- thermodynamic properties (1)
Institute
- Physik (4)
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Dilatometric studies on single crystalline barlowite – a structurally perfect spin-1/2 Kagome system
(2015)
We present results of high-resolution thermal expansion measurements on single crystalline barlowite – a structurally perfect spin-1/2 kagome system. The data reveal strongly pronounced and anisotropic second-order phase transition anomalies at the Néel transition at TN = 16K. From these data, together with literature results on the specific heat, the uniaxial-pressure dependences of TN are derived. We find a rather large positive pressure coefficient for uniaxial pressure along the hexagonal c axis of ∂TN/∂pc = (2.3 ± 0.2) K/GPa and smaller negative in-plane pressure coefficient of ∂TN/∂pin-plane = -(0.6 ± 0.03) K/GPa. These effects result in a small positive pressure coefficient under hydrostatic-pressure conditions of ∂TN/∂phydr = (1.1 ± 0.2) K/GPa. Bond-lengths considerations indicate that inter-layer Cu-O bonds, being larger than those typically found in stable Cu-O complexes, are responsible for this behavior.
The quasi-two-dimensional organic charge-transfer salt κ -(BEDT-TTF) 2 Cu 2 (CN) 3 is one of the prime candidates for a quantum spin-liquid due the strong spin frustration of its anisotropic triangular lattice in combination with its proximity to the Mott transition. Despite intensive investigations of the material’s low-temperature properties, several important questions remain to be answered. Particularly puzzling are the 6 K anomaly and the enigmatic effects observed in magnetic fields. Here we report on low-temperature measurements of lattice effects which were shown to be particularly strongly pronounced in this material (R. S. Manna et al., Phys. Rev. Lett. 2010, 104, 016403)). A special focus of our study lies on sample-to-sample variations of these effects and their implications on the interpretation of experimental data. By investigating overall nine single crystals from two different batches, we can state that there are considerable differences in the size of the second-order phase transition anomaly around 6 K, varying within a factor of 3. In addition, we find field-induced anomalies giving rise to pronounced features in the sample length for two out of these nine crystals for temperatures T< 9 K. We tentatively assign the latter effects to B-induced magnetic clusters suspected to nucleate around crystal imperfections. These B-induced effects are absent for the crystals where the 6 K anomaly is most strongly pronounced. The large lattice effects observed at 6 K are consistent with proposed pairing instabilities of fermionic excitations breaking the lattice symmetry. The strong sample-to-sample variation in the size of the phase transition anomaly suggests that the conversion of the fermions to bosons at the instability is only partial and to some extent influenced by not yet identified sample-specific parameters.