Refine
Year of publication
Language
- English (159)
Has Fulltext
- yes (159)
Is part of the Bibliography
- no (159)
Keywords
- Heavy-ion collisions (3)
- Beam Energy Scan (2)
- C1 inhibitor (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Diffraction (2)
- Heavy ion collisions (2)
- Shear viscosity (2)
- hereditary angioedema (2)
Institute
We present the results of charged particle fluctuations measurements in Au+Au collisions at sqrt[sNN ]=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark-gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a heavy ion jet interaction generation model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.
We report inclusive photon measurements about midrapidity ( |y| <0.5 ) from 197 Au + 197 Au collisions at sqrt[sNN ]=130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta E/E ~ 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum ( pt ) spectra of pi 0 mesons about midrapidity ( |y| <1 ) via the pi 0 --> gamma gamma decay channel. The fractional contribution of the pi 0 --> gamma gamma decay to the inclusive photon spectrum decreases by 20%±5% between pt =1.65 GeV/c and pt =2.4 GeV/c in the most central events, indicating that relative to pi 0 --> gamma gamma decay the contribution of other photon sources is substantially increasing.
We present the first large-acceptance measurement of event-wise mean transverse momentum <pt> fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt[sNN] = 130 GeV. The observed nonstatistical <pt> fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise <pt> distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range | eta |<1,2 pi azimuth, and 0.15 <= pt <= 2 GeV/c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported <pt> fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to <pt> fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.
We report the first observations of the first harmonic (directed flow, v1) and the fourth harmonic (v4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v2) generated at RHIC. From the correlation of v2 with v1 it is determined that v2 is positive, or in-plane. The integrated v4 is about a factor of 10 smaller than v2. For the sixth (v6) and eighth (v8) harmonics upper limits on the magnitudes are reported.
Two-pion correlation functions in Au+Au collisions at sqrt[sNN] = 130 GeV have been measured by the STAR (solenoidal tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The Hanbury Brown-Twiss parameters display a weak energy dependence over a broad range in sqrt[sNN].
The first measurements of light antinucleus production in Au+Au collisions at the Relativistic Heavy-Ion Collider are reported. The observed production rates for d-bar and 3He-bar are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at CERN SPS energy. These analyses also indicate that the 3He-bar freeze-out volume is smaller than the d-bar freeze-out volume.
We present the first measurement of midrapidity vector meson phi production in Au+Au collisions at RHIC (sqrt[sNN]=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio N phi /Nh- is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio N phi /Nh- and T for the phi meson at midrapidity do not change for the selected multiplicity bins.
We report first results on elliptic flow of identified particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.
The minimum-bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons ( h-) in Au+Au interactions at sqrt[sNN] = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/d eta | eta = 0 = 280±1(stat)±20(syst), an increase per participant of 38% relative to pp-bar collisions at the same energy. The mean transverse momentum is 0.508±0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pperp. The pseudorapidity distribution is almost constant within | eta |<1.
Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au + Au collisions at √sNN = 130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π− = 0.161± 0.002(stat) ± 0.024(syst) and K−/π− = 0.146± 0.002(stat) ± 0.022(syst) for the most central collisions. The K+/π− ratio is lower than the same ratio observed at the SPS while the K−/π− is higher than the SPS result. The ratios are enhanced by about 50% relative to p + p and p¯ + p collision data at similar energies.