Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- host specificity (3)
- smut fungi (2)
- DNA-based taxonomy (1)
- Entorrhizales (1)
- Entyloma microsporum complex (1)
- Entyloma ranunculi-repentis complex (1)
- Glomosporiaceae (1)
- Microbotryales (1)
- Obituary (1)
- Smut fungi (1)
Smut fungi (Ustilaginomycotina) were previously defined as plant parasites that produced blackish or brownish masses of teliospores in or on various organs of plants. Each teliospore germinates to form a single basidium with usually four basidiospores that subsequently grow as a saprobic, yeast-like, haploid stage. The Ustilaginomycotina are a highly diverse group with about 1,700 species in 115 different genera. All of the species were united in a single order, the Ustilaginales, in late 19th century. These teliospore producing fungi are now considered the classic smut fungi. Towards the end of the 20th century, new ideas were brought into this classification system. Most notable was the comparative work regarding the ultrastructure of septal pores and the anatomy of the interaction zones between host and parasite. This work changed the whole concept of smut fungi and their evolutionary relationships. These results were subsequently supported by molecular phylogenetic studies. Both lines of investigation led to the classification of the smut fungi into four different classes, Ustilaginomycetes, Exobasidiomycetes, Malasseziomycetes and Moniliellomycetes (see chapter 1.3).
A reliable taxonomy that reflects phylogenies needed in order to estimate the diversity and the relationships between the diverse groups of smut fungi. In the last 20 years, molecular investigations based mostly on rDNA loci, e.g. ITS (internal transcribed spacer) or LSU (large subunit), have revealed the evolutionary relationships between many taxa of smut fungi. However, there are few phylogenetic studies available for smut fungi (see chapter 1.5.1), and much work is needed to develop backbone phylogenetic trees and to resolve species complexes of many smut fungi.
This thesis reports the results of six different studies that aimed to develop new and improved tools for the phylogenetic analyses of smut fungi, and then apply these methods to selected groups of smut fungi. The first study (Kruse et al. 2017a, Chapter 3) developed a method to improve the amplification of ITS sequences of some smut fungi. Due to its high discrimination value, the ITS gene region is widely used as a barcoding locus for species delimitation of fungi. For this purpose, the general ITS primers ITS1 and ITS4 or more specific modifications, e.g. ITS1F for Ascomycota, ITS4B for Basidiomycota or M-ITS1 for smut fungi, were used. As these primer combinations often yielded unsatisfactory results, due to coamplification of other (contaminant) fungi or the host plant DNA, improvement of the amplification of the ITS region was needed. In order to design new smut specific primers for the ITS region, a representative set of several sequences of the flanking regions of the ITS region (LSU and SSU) of smut fungi, plants and other fungi were downloaded from GenBank. A set of primers was designed on this dataset. These primers were tested on a representative set of about 70 different smut genera under different PCR conditions. Finally, three different primers, one forward primer, smITS-F, and two reverse primers, smITS-R1 and -R2, were selected as the best ones. The following tests with different combinations of these primers, and also under inclusion of the M-ITS1 primer, showed only slight differences in the number of different genera that successfully amplified. But there were some differences regarding the genera that amplified. A broader test on 205 samples in 39 genera showed that the PCR efficiency of the newly designed primers was much better than the primer set ITS4/M-ITS1. With the primers designed in this study almost no non-target ITS was amplified, giving new opportunities especially for amplifying ancient DNA or DNA from older herbarium samples. However, many species groups remain unresolved by only one gene region.
The second study (Kruse et al. 2017c, Chapter 4) found new loci and suitable primers that better resolved multi-locus trees. To date, the most frequently used loci for making multi-locus trees are SSU (small subunit), LSU (large subunit) and ITS (internal transcribed spacer). While the LSU is not always sufficient to distinguish between closely related species, it is highly discriminative above the species level. In an effort to increase the phylogenetic resolution of smut phylogenies, some protein-coding genes were used, including rpb1, rpb2, and atp6 with varying success (see Chapter 2.1.2). As most of these loci are seldom used or sometimes only work on pure cultures because of their low specifity, new protein-coding loci were identified that produced reliable phylogenetic trees. Based on five available genomes, potential gene loci were filtered for possible primers. Initially, 40 different primer combinations for 14 gene loci were tested on a set of twelve different genera of smut fungi. The best candidates were selected and optimized during further tests. Finally, 22 different forward primers and 17 different reverse primers for nine different gene regions were developed, with each differentiating at least one genus of smut fungi (preferably for Ustilaginomycetes). The different primers showed varying discriminative power for different smut genera. They worked best for the Ustilaginaceae, based on the primer designed from Ustilaginomycetes genomes. These new primer sets and loci have the potential to resolve different species groups within the smut fungi and furthermore to produce reliable phylogenetic trees with high resolution. To prove their applicability, three species complexes were investigated in-depth, two from the Ustilaginomycetes and one from the Exobasidiomycetes.
...
Leaf-stripe smuts on grasses are a highly polyphyletic group within Ustilaginomycotina, occurring in three genera, Tilletia, Urocystis, and Ustilago. Currently more than 12 Ustilago species inciting stripe smuts are recognised. The majority belong to the Ustilago striiformis-complex, with about 30 different taxa described from 165 different plant species. This study aims to assess whether host distinct-lineages can be observed amongst the Ustilago leaf-stripe smuts using nine different loci on a representative set. Phylogenetic reconstructions supported the monophyly of the Ustilago striiformis-complex that causes leaf-stripe and the polyphyly of other leaf-stripe smuts within Ustilago. Furthermore, smut specimens from the same host genus generally clustered together in well-supported clades that often had available species names for these lineages. In addition to already-named lineages, three new lineages were observed, and described as new species on the basis of host specificity and molecular differences: namely Ustilago jagei sp. nov. on Agrostis stolonifera, U. kummeri sp. nov. on Bromus inermis, and U. neocopinata sp. nov. on Dactylis glomerata.
There are 63 known species of Thecaphora (Glomosporiaceae, Ustilaginomycotina), a third of which occur on Asteraceae. These smut fungi produce yellowish-brown to reddish-brown masses of spore balls in specific, mostly regenerative, plant organs. A species of Thecaphora was collected in the flower heads of Anthemis chia (Anthemideae, Asteraceae) on Rhodes Island, Greece, in 2015 and 2017, which represents the first smut record of a smut fungus on a host plant species in this tribe. Based on its distinctive morphology, host species and genetic divergence, this species is described as Thecaphora anthemidis sp. nov. Molecular barcodes of the ITS region are provided for this and several other species of Thecaphora. A phylogenetic and morphological comparison to closely related species showed that Th. anthemidis differed from other species of Thecaphora. Thecaphora anthemidis produced loose spore balls in the flower heads and peduncles of Anthemis chia unlike other flower-infecting species.
Plant pathogenic smut fungi in the broader sense can be divided into the Ustilaginomycetes, which cause classical smut symptoms with masses of blackish spores being produced in a variety of angiosperms, and the Exobasidiomycetes, which are often less conspicuous, as many do not shed large amounts of blackish spores. The leaf-spot causing members of the genus Entyloma (Entylomatales, Exobasidiomycetes) belong to the latter group. Currently, 172 species that all infect eudicots are included in the genus. Vánky (2012) recognised five Entyloma species on species of Ranunculus s.lat. Two have been reported only from Ficaria verna s.lat., while three, E. microsporum, E. ranunculi-repentis, E. verruculosum, have been reported to have a broad host range, encompassing 30, 26, and 5 species of Ranunculus, respectively. This broad host range is in contrast to the generally high host specificity assumed for species of Entyloma, indicating that they may represent complexes of specialised species. The aim of this study was to investigate Entyloma on Ranunculus s.lat. using multigene phylogenies and morphological comparisons. Phylogenetic analyses on the basis of up to four loci (ITS, atp2, ssc1, and map) showed a clustering of Entyloma specimens according to host species. For some of these Entyloma lineages, names not currently in use were available and reinstated. In addition, Entyloma microsporum s.str. is neotypified. Six novel species are described in this study, namely, Entyloma jolantae on Ranunculus oreophilus, E. klenkei on R. marginatus, E. kochmanii on R. lanuginosus, E. piepenbringiae on R. polyanthemos subsp. nemorosus (type host) and R. repens, E. savchenkoi on R. paludosus, and E. thielii on R. montanus. For all species diagnostic bases and morphological characteristics are provided. The results in this study once more highlight the importance of detailed re-investigation of broad host-range pathogens of otherwise specialised plant pathogen groups.
Kálmán Vánky (15th of June 1930–18th of October 2021) was arguably the most prolific researcher of smut fungi so far. He published more than 1000 taxonomic novelties, and crowned his outstanding oeuvre with the most comprehensive monograph of the smut fungi (Smut Fungi of the World) written to date.
Die Fundmeldungen in Band 34 von Botanik und Naturschutz in Hessen stammen von: Dirk Bönsel, Martin De Jong, Klaus Dühr, Uta Engel, Benjamin Feller, Christian Feuring, Thomas Gregor, Arthur Händler, Karsten Horn, Diemut Klärner, Julia Kruse, Eric Martiné, Hasko Friedrich Nesemann, Kai Uwe Nierbauer, Uwe Raabe, Susanne Raehse, Felix Reischmann, Bernd Sauerwein, Petra Schmidt, Fabian Schrauth, Christof Nikolaus Schröder, Helmut Siebert, Michael Thieme, Otto Wacker und Rüdiger Wittig.