Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Chikungunya (1)
- Dengue (1)
- Filariasis (1)
- High altitude (1)
- Himalayas (1)
- Leishmaniasis (1)
- Malaria (1)
- MinION (1)
- Mosquito (1)
- Mountain (1)
The success of social insects is largely intertwined with their highly advanced chemical communication system that facilitates recognition and discrimination of species and nest-mates, recruitment, and division of labor. Hydrocarbons, which cover the cuticle of insects, not only serve as waterproofing agents but also constitute a major component of this communication system. Two cryptic Crematogaster species, which share their nest with Camponotus ants, show striking diversity in their cuticular hydrocarbon (CHC) profile. This mutualistic system therefore offers a great opportunity to study the genetic basis of CHC divergence between sister species. As a basis for further genome-wide studies high-quality genomes are needed. Here, we present the annotated draft genome for Crematogaster levior A. By combining the three most commonly used sequencing techniques—Illumina, PacBio, and Oxford Nanopore—we constructed a high-quality de novo ant genome. We show that even low coverage of long reads can add significantly to overall genome contiguity. Annotation of desaturase and elongase genes, which play a role in CHC biosynthesis revealed one of the largest repertoires in ants and a higher number of desaturases in general than in other Hymenoptera. This may provide a mechanistic explanation for the high diversity observed in C. levior CHC profiles.
Driven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion. By applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Aedes aegypti, sampled along an altitudinal gradient in Nepal (200–1300 m), we identify putatively adaptive traits and describe the species' genomic footprint of climate adaptation to colder ecoregions. We found two differentiated clusters with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300 m) and all other lowland populations (≤800 m). We revealed nonsynonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern. Other than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. Local high-altitude adaptation could be one explanation of the population's phenotypic cold tolerance. Carrying alleles relevant for survival under colder climate increases the likelihood of this highland population to a worldwide expansion into other colder ecoregions.
Background: Driven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion.
Results: By applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Ae. aegypti, sampled along an altitudinal temperature gradient in Nepal (200- 1300m), we identify adaptive traits and describe the species’ genomic footprint of climate adaptation to colder ecoregions. We found two clusters of differentiation with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300m) and all other lowland populations (≤ 800 m). We revealed non-synonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern.
Conclusion: Other than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. This finding either indicates a differential invasion history to Nepal or local high-altitude adaptation explaining the population’s phenotypic cold tolerance. In any case, this highland population can be assumed to carry pre-adapted alleles relevant for the species’ invasion into colder ecoregions worldwide that way expanding their climate niche.
Observed weather and projected climate change suggest an increase in the transmission of vector-borne diseases (VBDs) in the Hindu Kush Himalayan (HKH) region. In this study, we systematically explore the literature for empiric associations between the climate variables and specific VBDs and their vectors in the HKH region. We conducted a systematic synthesis of the published literature on climate variables, VBDs and vectors in the HKH region until the 8th of December 2020. The majority of studies show significant positive associations of VBDs with climatic factors, such as temperature, precipitation, relative humidity, etc. This systematic review allowed us to identify the most significant variables to be considered for evidence-based trend estimates of the effects of climate change on VBDs and their vectors in the HKH region. This evidence-based trend was set into the context of climate change as well as the observed expansion of VBDs and disease vectors in the HKH region. The geographic range of VBDs expanded into previously considered non-endemic areas of highlands (mountains) in the HKH region. Based on scarce, but clear evidence of a positive relationship of most climate variables and VBDs and the observed climatic changes, we strongly recommend an expansion of vector control and surveillance programmes in areas of the HKH region that were previously considered to be non-endemic.