Refine
Document Type
- Article (3)
- Conference Proceeding (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
- Medizin (4)
Purpose: The management of patients with suspected appendicitis remains a challenge in daily clinical practice, and the optimal management algorithm is still being debated. Negative appendectomy rates (NAR) continue to range between 10 and 15%. This prospective study evaluated the accuracy of a diagnostic pathway in acute appendicitis using clinical risk stratification (Alvarado score), routine ultrasonography, gynecology consult for females, and selected CT after clinical reassessment.
Methods: Patients presenting with suspected appendicitis between November 2015 and September 2017 from age 18 years and above were included. Decision-making followed a clear management pathway. Patients were followed up for 6 months after discharge. The hypothesis was that the algorithm can reduce the NAR to a value of under 10%.
Results: A total of 183 patients were included. In 65 of 69 appendectomies, acute appendicitis was confirmed by histopathology, corresponding to a NAR of 5.8%. Notably, all 4 NAR appendectomies had other pathologies of the appendix. The perforation rate was 24.6%. Only 36 patients (19.7%) received a CT scan. The follow-up rate after 30 days achieved 69%, including no patients with missed appendicitis. The sensitivity and specificity of the diagnostic pathway was 100% and 96.6%, respectively. The potential saving in costs can be as much as 19.8 million €/100,000 cases presenting with the suspicion of appendicitis.
Conclusion: The risk-stratified diagnostic algorithm yields a high diagnostic accuracy for patients with suspicion of appendicitis. Its implementation can safely reduce the NAR, simultaneously minimizing the use of CT scans and optimizing healthcare-related costs in the treatment of acute appendicitis.
Ferroptosis, a newly discovered form of cell death mediated by reactive oxygen species (ROS) and lipid peroxidation, has recently been shown to have an impact on various cancer types; however, so far there are only few studies about its role in hepatocellular carcinoma (HCC). The delicate equilibrium of ROS in cancer cells has found to be crucial for cell survival, thus increased levels may trigger ferroptosis in HCC.In our study, we investigated the effect of different ROS modulators and ferroptosis inducers on a human HCC cell line and a human hepatoblastoma cell line. We identified a novel synergistic cell death induction by the combination of Auranofin and buthionine sulfoxime (BSO) or by Erastin and BSO at subtoxic concentrations. We found a caspase-independent, redox-regulated cell death, which could be rescued by different inhibitors of ferroptosis. Both cotreatments stimulated lipid peroxidation. All these findings indicated ferroptotic cell death. Both cotreatments affected the canonical ferroptosis pathway through GPX4 downregulation. We also found an accumulation of Nrf2 and HO-1, indicating an additional effect on the non-canonical pathway. Our results implicate that targeting these two main ferroptotic pathways simultaneously can overcome chemotherapy resistance in HCC.
Introduction: Ferroptosis has recently been identified as a form of programmed cell death caused by an accumulation of lipid reactive oxygen species (ROS). However, little is yet known about the role in hepatocellular carcinoma (HCC) and its signalling mechanism as well the modulation of ROS.
Material and methods: Human HCC cell lines were treated with different concentrations of ROS modulators (Auranofin, Erastin, BSO). Cell death was determined by analysis of PI-stained nuclei using flow cytometry. ROS production and lipid peroxidation were analysed at early time points before cell death starts. For mechanistic studies we performed Western Blot and a Proteome array. Different inhibitors of cell death target proteins, ROS-scavengers as well as lipoxygenase inhibitors were used. To investigate the functional relevance of NAPDH oxidases (NOX) 1 and 4 for ROS modulation and ferroptosis we genetically silenced its genes using three distinct siRNAs and we used the NOX1/4-inhibitor GKT137831.
Results and discussions: Compared to the single treatment, Auranofin/BSO-cotreatment as well as Erastin/BSO-cotreatment acted in concert to trigger cell death and to reduce cell viability of HCC cells in a dose- and time-dependent manner. Furthermore, both cotreatments induce ROS production, lipid peroxidation and ferroptotic cell death, which could be inhibited by the use of Ferrostatin-1 (inhibitor of lipid peroxidation) and Liproxstatin-1 (specific inhibitor of ferroptosis). The broad-range caspase inhibitor zVAD.fmk failed to rescue cells from Auranofin/BSO- or Erastin/BSO-cotreatment induced cell death. No activation of caspases-3 could be seen in the proteome profiler apoptosis assay. Importantly, the selective lipoxygenase (LOX) inhibitor Baicalain and the pan-LOX inhibitor NDGA protect HCC cells from Auranofin/BSO- and Erastin/BSO-cotreatment stimulated lipid peroxidation, ROS generation and cell death, indication that the induction of ferroptosis may bypass apoptosis resistance of HCC cells. Mechanistic studies showed that Auranofin/BSO-cotreatment decreased TrxR-activity, led to Nrf2 accumulation and promoted the activation of HO-1. In contrast, NOX 1 and 4 were involved in Erastin/BSO-mediated cell death and the use of the NOX1/4-inhibitor GKT137831 rescued HCC cells from the Erastin/BSO-induced cell death.
Conclusion: By providing new insights into the molecular regulation of ROS and ferroptosis, our study contributes to the development of novel treatment strategies to reactivate programmed cell death in HCC cells.
Several microRNAs (miRNAs) are associated with the molecular pathogenesis of hepatocellular carcinoma (HCC). However, previous studies analyzing the dysregulation of miRNAs in HCC show heterogeneous results. We hypothesized that part of this heterogeneity might be attributable to variations of miRNA expression deriving from the HCC capsule or the fibrotic septa within the peritumoral tissue used as controls. Tissue from surgically resected hepatitis C–associated HCC from six well-matched patients was microdissected using laser microdissection and pressure catapulting technique. Four distinct histologic compartments were isolated: tumor parenchyma (TP), fibrous capsule of the tumor (TC), tumor-adjacent liver parenchyma (LP), and cirrhotic septa of the tumor-adjacent liver (LC). MiRNA expression profiling analysis of 1105 mature miRNAs and precursors was performed using miRNA microarray. Principal component analysis and consecutive pairwise supervised comparisons demonstrated distinct patterns of expressed miRNAs not only for TP versus LP (e.g., intratumoral down-regulation of miR-214, miR-199a, miR-146a, and miR-125a; P< .05) but also for TC versus LC (including down-regulation within TC of miR-126, miR-99a/100, miR-26a, and miR-125b; P< .05). The tumor capsule therefore demonstrates a tumor-like phenotype with down-regulation of well-known tumor-suppressive miRNAs. Variations of co-analyzed fibrotic tissue within the tumor or in controls may have profound influence on miRNA expression analyses in HCC. Several miRNAs, which are proposed to be HCC specific, may indeed be rather associated to the tumor capsule. As miRNAs evolve to be important biomarkers in liver tumors, the presented data have important translational implications on diagnostics and treatment in patients with HCC.