Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- accessibility switch (2)
- inward proton pump (2)
- microbial rhodopsin (2)
- Black Lipid Membrane (1)
- Microbial Rhodopsins (1)
- Optogenetics (1)
- Patch Clamp (1)
- optogenetic (1)
- optogenetics (1)
Institute
An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light.
The new class of microbial rhodopsins, called xenorhodopsins (XeRs),[1] extends the versatility of this family by inward H+ pumps.[2–4] These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina (NsXeR).[1] The photodynamic behavior of NsXeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of NsXeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H+ acceptor D220.
In optogenetischen Anwendungen, welche die Manipulation von zellulären Aktivitäten durch Licht ermöglichen, werden die Eigenschaften von mikrobiellen Rhodopsinen, einer Familie natürlich vorkommender lichtgesteuerter Proteine, ausgenutzt.
In der vorliegenden Arbeit wurden die einwärts transportierende Protonenpumpe NsXeR, sowie die auswärts Natriumionenpumpe KR2 untersucht. Des Weiteren wurden Tandem Proteine betrachtet, die mikrobielle Rhodopsine kombinieren mit dem Chemokinrezeptor CXCR4, der durch SDF1 aktiviert und anschließend in Endosomen internalisiert wird.
Für die Untersuchung des Mechanismus, der die Vektorialität in NsXeR bestimmt, wurde eine umfassende elektrophysiologische Studie durchgeführt. In Patch Clamp Messungen an NsXeR exprimierenden NG108-15 Zellen wurden bei kontinuierlicher 561 nm Beleuchtung aktive Einwärtsströme entgegen eines elektrochemischen Gradienten gemessen. Ein Einfluss des intrazellulären pHs auf die steady-state Ströme und deren Abfallkinetik konnte nicht festgestellt werden. Der Vergleich der exponentiellen Abfallrate k2 mit den Übergängen im NsXeR Photozyklus, lässt den Schluss zu, dass der ratenlimitierende Schritt der MII Zerfall ist.
Die elektrogenen Schritte im NsXeR Photozyklus wurden mit elektrischen Messungen an der black lipid membrane (BLM) an NsXeR Proteoliposomen bestimmt. Die Belichtung mit 20 ns Lichtpulsen bei 556 nm rufen Spannungssignale hervor, die exponentiell gefittet wurden, wobei drei elektrogene Schritte identifiziert werden konnten. Bei pH 7.4 betrugen die ermittelten Zeitkonstanten etwa 220 µs, 1 ms und 15 ms, denen 42%, 10% und 48% an der Gesamtladungsverschiebung zugeordnet wurden. Die elektrogenen Schritte konnten den Übergängen im Photozyklus zugeordnet werden, wobei der erste Schritt mit t1 dem MI Aufbau (Deprotonierung Schiff’sche Base, Protonenabgabe zur intrazellulären Seite) zugeschrieben wurde. t2 wurde dem MI→MII Übergang (Switch, Zugänglichkeitsänderung vom Intra- zum Extrazellulären) zugeordnet und t3 korreliert mit dem MII Zerfall (Reprotonierung Schiff’sche Base, Protonenaufnahme von der extrazellulären Seite).
Die Kinetik und der Ladungstransportanteil des zweiten elektrogenen Schritts haben keine starke pH Abhängigkeit, was sich dadurch erklären lässt, dass t2 durch eine Konformationsänderung bestimmt wird. t1 und t3 werden bei höheren pH Werten beschleunigt, was sich bei t1 mit einer erleichterten intrazellulären Protonenabgabe erklären lässt. Für t3 wurde eine Reprotonierung durch eine Donor Gruppe Asp76 vorgeschlagen. Die pH-sensitive Änderung der relativen Ladungstransferanteile des ersten und dritten elektrogenen Schrittes (∆ΨI und ∆ΨIII) wurden durch eine mögliche Verzögerung der frühen Protonenabgabe bei niedrigen pH Werten erklärt.
Der mutmaßliche Protonenakzeptor Asp220 wurde gegen Asn und Glu ausgetauscht und in Patch Clamp sowie UV-Vis Spektroskopie Messungen untersucht. Für D220N wurden keine Pumpströme und kein Einfluss auf die maximale Absorptionswellenlänge λmax festgestellt. D220E dagegen führte zu einer Erniedrigung des pKa-Werts der Schiff’schen Base und zu einer Verminderung der Iss-Abfallsrate k2 in Patch Clamp Dauerbelichtungsmessungen (D220E k2 = 27.1 ± 1.8 Hz, Wildtyp k2 = 83.1 ± 2.6 Hz). Daraus konnte geschlossen werden, dass Asp220 wesentlich für den Protonentransport ist und nicht als Gegenion für die protonierte Schiff’sche Base dient.
In Patch Clamp Experimenten bei 561 nm Dauerbelichtung und zusätzlicher gepulster Belichtung bei 355 nm wurde der Blaulichteffekt an NsXeR untersucht, bei dem Proteine im M Intermediat ein Photon absorbieren und unter Reprotonierung der Schiff’schen Base in den Grundzustand zurückkehren.
Für NsXeR konnte eine Potentialabhängigkeit für die Richtung der transienten Ströme, die durch die
355 nm Belichtung hervorgerufen wurden, festgestellt werden. Beim NsXeR Blaulichteffekt scheint eine
Reprotonierung der Schiff’schen Base von beiden Seiten möglich zu sein, was auf die unterschiedlichen Zugänglichkeiten in den beiden M Zuständen MI und MII zurückgeführt wurde. Es wurde ein Modell vorgeschlagen, welches auf einem potentialabhängigen Gleichgewicht zwischen MI und MII basiert.
In Patch Clamp Messungen an KR2 exprimierenden NG108-15 Zellen wurden die Pumpströme untersucht, die durch den auswärts Transport von Na+ und H+ hervorgerufen wurden. Die Na+-Konzentrationen der intra- und extrazellulären Lösungen wurden symmetrisch variiert und die steady-state Ströme Iss bei 532 nm Dauerbelichtung betrachtet. Mit steigender Na+-Konzentration zeigte sich ein Übergang von einer linearen Potentialabhängigkeit der Iss, zu einem sättigungsähnlichen Verhalten bis hin zu einer fast glockenförmigen Form. Da die exponentielle Abfallrate der steady-state Ströme k2 in ihrer Potentialabhängigkeit mit den Iss korrelierte, konnte geschlossen werden, dass die Ströme überwiegend kinetisch limitiert sind. Die Erhöhung der Rate k2 mit steigender Na+-Konzentration zwischen -120 mV und -60 mV deutet darauf hin, dass die Na+-Aufnahme von der intrazellulären Seite bei diesen Bedingungen die Limitierung für die Pumpe darstellt.
Unter Na+-“freien” Bedingungen wurde der Einfluss des intrazellulären pHs untersucht. Für die Rate k2 wurde eine Erhöhung bei niedrigen pH Werten festgestellt und die Potentiale E0 (Iss = 0 pA) verschoben bei niedrigem intrazellulärem pH zu hyperpolarisierenden Potentialen. Daraus lässt sich schließen, dass die steady-state Ströme durch den Transport von Protonen hervorgerufen wurden.
In Messungen mit gepulster 530 nm Belichtung wurden die transienten Pumpströme gemessen und durch exponentielles Fitten des Stromabfalls drei elektrogene Schritte identifiziert. Eine Abhängigkeit vom Potential und der Na+-Konzentration konnte nur für den dritten Schritt mit der Rate 1/τ3 festgestellt werden, wobei 1/τ3 mit der Na+-Konzentration und bei positiveren Potentialen steigt. Unter Na+-“freien” Bedingungen steigt 1/τ3 auch mit niedrigeren intrazellulären pH Werten. Die elektrogenen Schritte wurden dem KR2 Photozyklus zugeordnet, wobei ein Modell angewendet wurde, das einen M1→M2 Übergang einführt. Diesem wurde der zweite elektrogene Schritt zugeordnet. Die relativen Ladungstransportanteile Q2 und Q3 des zweiten und dritten elektrogenen Schrittes sind sowohl potential- als auch Na+-abhängig. Um dieses Verhalten zu erklären, wurde ein Modell vorgeschlagen, bei dem ein Ausgleichsladungstransfer in Form von einer Protonenabgabe und -wiederaufnahme während des Photozyklus eingeführt wurde.
In Patch Clamp Messungen wurde die erhaltene Funktionalität der ChR2 Mutante ChR2(L132C) mit erhöhter Ca2+-Permeabilität im Tandem Protein tCXCR4/CatCh nachgewiesen. Auch die Internalisierung von tCXCR4/CatCh konnte anhand der zeitabhängigen Abnahme des CatCh-Signals nach der CXCR4-Aktivierung durch SDF1 in Strommessungen beobachtet werden. Für tCXCR4/Arch, ein Tandem Protein mit einer Protonenpumpe, wurde die SDF1-induzierte Internalisierung mit Hilfe der konfokalen Laser-Scanning-Mikroskopie betrachtet und eine Kolokalisierung der Fluoreszenz des im Tandem exprimierten YFP und der eines gelabelten CXCR4-spezifischen Antikörpers in intrazellulären Vesikeln beobachtet. Bei Behandlung mit dem CXCR4 Antagonisten AMD3100 wurde die Kolokalisierung hauptsächlich in der Zellmembran festgestellt, da die Internalisierung blockiert war. Die Tandem Protein könnten als in intrazellulären Organellen wirkende optogenetische Werkzeuge eingesetzt werden für z.B. die Manipulation der intrazellulären Ca2+-Konzentration.
The new class of microbial rhodopsins, called xenorhodopsins (XeRs),[1] extends the versatility of this family by inward H+ pumps.[2–4] These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina (NsXeR).[1] The photodynamic behavior of NsXeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of NsXeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H+ acceptor D220.