Refine
Has Fulltext
- yes (30)
Is part of the Bibliography
- no (30)
Keywords
- Cortex (4)
- auditory cortex (3)
- bats (3)
- Neural circuits (2)
- Sensory processing (2)
- frontal cortex (2)
- local-field potentials (2)
- prefrontal cortex (2)
- Acoustic signals (1)
- Animal physiology (1)
Institute
- Biowissenschaften (29)
- Ernst Strüngmann Institut (1)
- MPI für empirische Ästhetik (1)
- Medizin (1)
- Präsidium (1)
Deviance detection describes an increase of neural response strength caused by a stimulus with a low probability of occurrence. This ubiquitous phenomenon has been reported for multiple species, from subthalamic areas to auditory cortex. While cortical deviance detection has been well characterised by a range of studies covering neural activity at population level (mismatch negativity, MMN) as well as at cellular level (stimulus-specific adaptation, SSA), subcortical deviance detection has been studied mainly on cellular level in the form of SSA. Here, we aim to bridge this gap by using noninvasively recorded auditory brainstem responses (ABRs) to investigate deviance detection at population level in the lower stations of the auditory system of a hearing specialist: the bat Carollia perspicillata. Our present approach uses behaviourally relevant vocalisation stimuli that are closer to the animals' natural soundscape than artificial stimuli used in previous studies that focussed on subcortical areas. We show that deviance detection in ABRs is significantly stronger for echolocation pulses than for social communication calls or artificial sounds, indicating that subthalamic deviance detection depends on the behavioural meaning of a stimulus. Additionally, complex physical sound features like frequency- and amplitude-modulation affected the strength of deviance detection in the ABR. In summary, our results suggest that at population level, the bat brain can detect different types of deviants already in the brainstem. This shows that subthalamic brain structures exhibit more advanced forms of deviance detection than previously known.
The brains of black 6 mice (Mus musculus) and Seba’s short-tailed bats (Carollia perspicillata) weigh roughly the same and share the mammalian neocortical laminar architecture. Bats have highly developed sonar calls and social communication and are an excellent neuroethological animal model for auditory research. Mice are olfactory and somatosensory specialists and are used frequently in auditory neuroscience, particularly for their advantage of standardization and genetic tools. Investigating their potentially different general auditory processing principles would advance our understanding of how the ecological needs of a species shape the development and function of the mammalian nervous system. We compared two existing datasets, recorded with linear multichannel electrodes down the depth of the primary auditory cortex (A1) while awake, across both species while presenting repetitive stimulus trains with different frequencies (∼5 and ∼40 Hz). We found that while there are similarities between cortical response profiles in bats and mice, there was a better signal to noise ratio in bats under these conditions, which allowed for a clearer following response to stimuli trains. This was most evident at higher frequency trains, where bats had stronger response amplitude suppression to consecutive stimuli. Phase coherence was far stronger in bats during stimulus response, indicating less phase variability in bats across individual trials. These results show that although both species share cortical laminar organization, there are structural differences in relative depth of layers. Better signal to noise ratio in bats could represent specialization for faster temporal processing shaped by their individual ecological niches.
Animals extract behaviorally relevant signals from “noisy” environments. To investigate signal extraction, echolocating provides a rich system testbed. For orientation, bats broadcast calls and assign each echo to the corresponding call. When orienting in acoustically enriched environments or when approaching targets, bats change their spectro-temporal call design. Thus, to assess call adjustments that are exclusively meant to facilitate signal extraction in “noisy” environments, it is necessary to control for distance-dependent call changes. By swinging bats in a pendulum, we tested the influence of acoustic playback on the echolocation behavior of Carollia perspicillata. This paradigm evokes reproducible orientation behavior and allows a precise definition of the influence of the acoustic context. Our results show that bats dynamically switch between different adaptations to cope with sound-based navigation in acoustically contaminated environments. These dynamics of echolocation behavior may explain the large variety of adaptations that have been reported in the bat literature.
Although new advances in neuroscience allow the study of vocal communication in awake animals, substantial progress in the processing of vocalizations has been made from brains of anaesthetized preparations. Thus, understanding how anaesthetics affect neuronal responses is of paramount importance. Here, we used electrophysiological recordings and computational modelling to study how the auditory cortex of bats responds to vocalizations under anaesthesia and in wakefulness. We found that multifunctional neurons that process echolocation and communication sounds were affected by ketamine anaesthesia in a manner that could not be predicted by known anaesthetic effects. In wakefulness, acoustic contexts (preceding echolocation or communication sequences) led to stimulus-specific suppression of lagging sounds, accentuating neuronal responses to sound transitions. However, under anaesthesia, communication contexts (but not echolocation) led to a global suppression of responses to lagging sounds. Such asymmetric effect was dependent on the frequency composition of the contexts and not on their temporal patterns. We constructed a neuron model that could replicate the data obtained in vivo. In the model, anaesthesia modulates spiking activity in a channel-specific manner, decreasing responses of cortical inputs tuned to high-frequency sounds and increasing adaptation in the respective cortical synapses. Combined, our findings obtained in vivo and in silico reveal that ketamine anaesthesia does not reduce uniformly the neurons’ responsiveness to low and high frequency sounds. This effect depends on combined mechanisms that unbalance cortical inputs and ultimately affect how auditory cortex neurons respond to natural sounds in anaesthetized preparations.
The mammalian frontal and auditory cortices are important for vocal behaviour. Here, using local field potential recordings, we demonstrate for the first time that the timing and spatial pattern of oscillations in the fronto-auditory cortical network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominantly top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depended on the behavioural role of the vocalization and on the timing relative to vocal onset. Remarkably, we observed the emergence of predominantly bottom-up (auditory-to-frontal cortex) information transfer patterns specific echolocation production, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to echolocation sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.
In humans, screams have strong amplitude modulations (AM) at 30 to 150 Hz. These AM correspond to the acoustic correlate of perceptual roughness. In bats, distress calls can carry AMs, which elicit heart rate increases in playback experiments. Whether amplitude modulation occurs in fearful vocalisations of other animal species beyond humans and bats remains unknown. Here we analysed the AM pattern of rats’ 22-kHz ultrasonic vocalisations emitted in a fear conditioning task. We found that the number of vocalisations decreases during the presentation of conditioned stimuli. We also observed that AMs do occur in rat 22-kHz vocalisations. AMs are stronger during the presentation of conditioned stimuli, and during escape behaviour compared to freezing. Our results suggest that the presence of AMs in vocalisations emitted could reflect the animal’s internal state of fear related to avoidance behaviour.
In natural environments, background noise can degrade the integrity of acoustic signals, posing a problem for animals that rely on their vocalizations for communication and navigation. A simple behavioral strategy to combat acoustic interference would be to restrict call emissions to periods of low-amplitude or no noise. Using audio playback and computational tools for the automated detection of over 2.5 million vocalizations from groups of freely vocalizing bats, we show that bats (Carollia perspicillata) can dynamically adapt the timing of their calls to avoid acoustic jamming in both predictably and unpredictably patterned noise. This study demonstrates that bats spontaneously seek out temporal windows of opportunity for vocalizing in acoustically crowded environments, providing a mechanism for efficient echolocation and communication in cluttered acoustic landscapes.
One Sentence Summary: Bats avoid acoustic interference by rapidly adjusting the timing of vocalizations to the temporal pattern of varying noise.
Summary The auditory midbrain (inferior colliculus, IC) plays an important role in sound processing, acting as hub for acoustic information extraction and for the implementation of fast audio-motor behaviors. IC neurons are topographically organized according to their sound frequency preference: dorsal IC regions encode low frequencies while ventral areas respond best to high frequencies, a type of sensory map defined as tonotopy. Tonotopic maps have been studied extensively using artificial stimuli (pure tones) but our knowledge of how these maps represent information about sequences of natural, spectro-temporally rich sounds is sparse. We studied this question by conducting simultaneous extracellular recordings across IC depths in awake bats (Carollia perspicillata) that listened to sequences of natural communication and echolocation sounds. The hypothesis was that information about these two types of sound streams is represented at different IC depths since they exhibit large differences in spectral composition, i.e. echolocation covers the high frequency portion of the bat soundscape (> 45 kHz), while communication sounds are broadband and carry most power at low frequencies (20-25 kHz). Our results showed that mutual information between neuronal responses and acoustic stimuli, as well as response redundancy in pairs of neurons recorded simultaneously, increase exponentially with IC depth. The latter occurs regardless of the sound type presented to the bats (echolocation or communication). Taken together, our results indicate the existence of mutual information and redundancy maps at the midbrain level whose response cannot be predicted based on the frequency composition of natural sounds and classic neuronal tuning curves.
The ability to vocalize is ubiquitous in vertebrates, but neural networks leading to vocalization production remain poorly understood. Here we performed simultaneous, large scale, neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus) during the production of echolocation and non-echolocation calls in bats. This approach allows to assess the general aspects underlying vocalization production in mammals and the unique evolutionary adaptations of bat echolocation. Our findings show that distinct intra-areal brain rhythms in the beta (12-30 Hz) and gamma (30-80 Hz) bands of the local field potential can be used to predict the bats’ vocal output and that phase locking between spikes and field potentials occurs prior vocalization production. Moreover, the fronto-striatal network is differentially coupled in the theta-band during the production of echolocation and non-echolocation calls. Overall, our results present evidence for fronto-striatal network oscillations in motor action prediction in mammals.
Frontal areas of the mammalian cortex are thought to be important for cognitive control and complex behaviour. These areas have been studied mostly in humans, non-human primates and rodents. In this article, we present a quantitative characterization of response properties of a frontal auditory area responsive to sound in the bat brain, the frontal auditory field (FAF). Bats are highly vocal animals and they constitute an important experimental model for studying the auditory system. At present, little is known about neuronal sound processing in the bat FAF. We combined electrophysiology experiments and computational simulations to compare the response properties of auditory neurons found in the bat FAF and auditory cortex (AC) to simple sounds (pure tones). Anatomical studies have shown that the latter provide feedforward inputs to the former. Our results show that bat FAF neurons are responsive to sounds, however, when compared to AC neurons, they presented sparser, less precise spiking and longer-lasting responses. Based on the results of an integrate-and-fire neuronal model, we speculate that slow, low-threshold, synaptic dynamics could contribute to the changes in activity pattern that occur as information travels through cortico-cortical projections from the AC to the FAF.