Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Target validation (2)
- Medicinal chemistry (1)
- Pharmacodynamics (1)
- Pharmacology (1)
- Small molecules (1)
- differential scanning fluorimetry (1)
- fragment-based drug design (1)
- multitarget drugs (1)
- neurodegeneration (1)
- nuclear receptor (1)
The retinoid X receptor (RXR) is a ligand-sensing transcription factor acting mainly as a universal heterodimer partner for other nuclear receptors. Despite presenting as a potential therapeutic target for cancer and neurodegeneration, adverse effects typically observed for RXR agonists, likely due to the lack of isoform selectivity, limit chemotherapeutic application of currently available RXR ligands. The three human RXR isoforms exhibit different expression patterns; however, they share high sequence similarity, presenting a major obstacle toward the development of subtype-selective ligands. Here, we report the discovery of the saturated fatty acid, palmitic acid, as an RXR ligand and disclose a uniform set of crystal structures of all three RXR isoforms in an active conformation induced by palmitic acid. A structural comparison revealed subtle differences among the RXR subtypes. We also observed an ability of palmitic acid as well as myristic acid and stearic acid to induce recruitment of steroid receptor co-activator 1 to the RXR ligand-binding domain with low micromolar potencies. With the high, millimolar endogenous concentrations of these highly abundant lipids, our results suggest their potential involvement in RXR signaling.
Die Superfamilie der nukleären Rezeptoren umfasst 48 ligandenabhänige Transkriptionsfaktoren, die durch Veränderungen in der Genexpression unterschiedlichste (patho-)physiologische Vorgänge wie Metabolismus, Entzündungen und Zelldifferenzierung beeinflussen.
Für die Vertreter der Retinoid X Rezeptoren (RXRs) und Peroxisomen Proliferator-aktivierten Rezeptoren (PPARs) wurden in den letzten Jahren vielversprechende Effekte auf neurodegenerative Erkrankungen berichtet. Beide Rezeptorklassen beeinflussen u.a. Bildung, Transport und Abbau des neurotoxischen Amyloid-β, das als eine der Ursachen für die Entstehung einer Alzheimer Demenz (AD) vermutet wird. Außerdem gibt es Hinweise darauf, dass durch gezielte Modulation der RXRs (besonders RXRγ) eine Remyelinisierung auto-immun demyelinisierter Neurone und damit eine regenerative Therapie für die Multiple Sklerose (MS) möglich sein könnte. Die aktuell zur Verfügung stehenden Liganden der RXRs besitzen unzureichende Subtypenselektivität und meist unvorteilhafte physikochemische Eigenschaften, die der weiteren Erforschung im Wege stehen. Um diese Hindernisse zu überwinden, sollten im Rahmen dieser Arbeit neuartige RXR-Agonisten synthetisiert und umfassend charakterisiert werden.
Ein kürzlich publizierter RXR-Agonist besitzt eine ungewöhnlich lineare Biphenylgrundstruktur und offenbart ein attraktives Aktivitätsprofil: Während alle drei RXR-Subtypen mit einem ähnlichen EC50-Wert (RXRα/β/γ = 12/12/14 µM) adressiert werden, führt die Bindung an RXRα nur zu einer minimalen Aktivierung (max. 5-fache Aktivierung im Vergleich zur Grundaktivität), während RXRβ und γ deutlich stärker aktiviert werden (60-70-fache Aktivierung). Da für diesen Chemotyp bislang noch keine systematischen Studien vorlagen, wurden seine Struktur-Wirkungs-Beziehungen (SAR) erforscht. Durch Synthese und in vitro Charakterisierung von 24 Derivaten konnten sowohl selektivitäts- als auch potenzfördernde Strukturmerkmale identifiziert werden, die sich auch kombinieren ließen. Es wurden ein RXRβ-selektives Derivat, mehrere RXRα/β-präferierende Analoga und ein potentes Derivat mit annähernd 100-fach gesteigerter Potenz ((EC50(RXRα/β/γ) = 0,08/0,15/0,22 µM) erhalten. Im Zuge der Charakterisierung wurden außerdem strukturelle Variationen identifiziert, die eine Umgehung des LXR/RXR-Heterodimers ermöglichen könnten. Zusätzlich gelang die Kristallisation der Ligandbindedomäne (LBD) von RXRα im Komplex mit dem potentesten Vertreter der Serie und offenbarte Potential für weitere Optimierungen, u.a. der Möglichkeit eine kovalente Bindung mit Cys432 zu etablieren und damit eine weitere Potenzsteigerung zu erreichen.
Neben der mangelnden Subtypenpräferenz behindern auch die ungünstigen physikochemischen Eigenschaften von RXR-Liganden die weitere Entwicklung von RXR-basierten Therapieoptionen. Deshalb sollte eine neue Leitstruktur mit überlegenen physikochemischen Eigenschaften identifiziert und durch systematische SAR-Untersuchungen weiterentwickelt werden. Für den experimentellen Wirkstoff Wy14,643, einem dualen Agonisten an PPARα und γ, wurden im Laufe der letzten vier Jahrzehnte wiederholt Effekte patentiert, die sich mit dem bislang bekannten Aktivitätsprofil nicht erklären ließen. Er zeigte u.a. in einem Tiermodell der MS einen immunmodulierenden Effekt und reduzierte in vitro die Bildung von Amyloid-β.Im Rahmen dieser Arbeit konnte Wy14,643 als potenter RXR-Agonist (EC50 (PPARα/γ/δ) = 36/54/- µM¸ EC50(RXRα/β/γ) = 9,1/13/31 µM) mit überlegenen physikochemischen Eigenschaften (z.B. Löslichkeit in Wasser = 48,6 mg/L) identifiziert und dadurch dessen Wirkungen erklärt werden.
Wy14,643 wurde als Startpunkt einer systematischen Untersuchung der Ligand-Rezeptor-Interaktionen sowohl an den PPARs und den RXRs ausgewählt. Dabei wurden ein potenter selektiver PPAR-Agonist und ein potenter und ausgeglichener panRXR/panPPAR-Agonist erhalten. Der panRXR/panPPAR-Agonist konnte im Komplex mit der LBD von PPARγ kristallisiert werden, wo der Ligand gleich doppelt gebunden vorliegt. Eines der Moleküle bindet in einer alternativen Bindungstasche. Diese Erkenntnis könnte die Grundlage für die Entwicklung einer neuen Klasse von PPARγ-Modulatoren legen.
Durch Kombination des erlangten SAR-Wissens wurde ein selektiver RXR-Agonist (EC50 (PPARα/γ/δ) = -/-/- µM¸ EC50(RXRα/β/γ) = 0,09/0,14/0,36 µM) mit annähernd 100-fach gesteigerter Potenz synthetisiert, der die günstigen physikochemischen Eigenschaften der Leitstruktur erhalten konnte (Löslichkeit in Wasser = 14,3 mg/L). Mit diesem Profil ist es gelungen einen RXR-Agonisten zu kreieren, der dem bisherigen Goldstandard Bexaroten bei vergleichbarer Potenz in physikochemischen Eigenschaften überlegen ist.
Die Kristallstruktur des RXR-selektiven Derivats im Komplex mit der LBD von RXRα zeigte einen orthosterischen Bindemodus und legte weitere Optimierungen nahe: So gibt es sowohl ungenutzten Raum, der zukünftig durch strukturbasierte Substitutionen adressiert werden könnte, als auch die Möglichkeit eine kovalente Bindung zum Rezeptor (Cys432) zu initiieren. Durch diese Arbeit konnten nicht nur eine Reihe von potenten RXR-Liganden identifiziert werden, durch die Entwicklung eines Sets aus PPAR-selektiven, dual PPAR/RXR-aktiven und RXR-selektiven Derivaten gleichen Chemotyps, entstand auch ein nützliches pharmakologisches Werkzeug zur weiteren Entschlüsselung des Zusammenspiels dieser Rezeptoren.
Die systematische Entwicklung einer Leitstruktur, wie sie in den vorangegangenen Projekten praktiziert wurde, kann je nach deren Komplexität eine kostenintensive und synthetisch anspruchsvolle Aufgabe darstellen. Im Rahmen dieser Arbeit wurde eine computergestützte Optimierung einer Leitstruktur als Teil einer selektiven Optimierung von Nebenaktivitäten (SOSA) etabliert, um den präparativen Aufwand der Strukturoptimierung zu reduzieren. Als Modellsubstanz wurde das Fettsäuremimetikum Cinalukast ausgewählt, das einen potenten Cysteinylleukotrienrezeptor 1 (CysLT1R)-Antagonisten darstellt, für den eine schwache Aktivität an PPARα entdeckt wurde. Ein automatisierter Arbeitsablauf testete eine virtuelle Bibliothek von annähernd 8000 Cinalukastanaloga auf ihre PPARα-Aktivität und die Derivate mit der besten vorhergesagten PPARα-Aktivität wurden durch maschinelles Lernen nach ihrem CysLT1R-Antagonismus klassifiziert. Die Synthese und Charakterisierung eines virtuell bevorzugten Derivats zeigte selektiven PPARα-Agonismus und konnte so den computergestützten Arbeitsablauf als wertvolles Instrument zur Optimierung von Fettsäuremimetika bestätigten.
Die vorliegende Arbeit hat bedeutende Fortschritte bei der Entwicklung von zwei neuen Chemotypen als RXR-Liganden erreicht. Die Klasse der Biphenyl-Analoga kann als Ausgangspunkt für eine weitere Entwicklung von subtypenselektiven RXR-Agonisten dienen und könnte gleichzeitig die gezielte Umgehung einzelner Heterodimere ermöglichen. Das Set aus drei Derivaten von Wy14,643 mit identischem Chemotyp, aber drastisch unterschiedlichen Aktivitätsprofilen an den PPARs und RXRs ermöglicht eine intensive pharmakologische Untersuchung der beiden Rezeptorfamilien und deren Zusammenspiel. Außerdem entstand aus dieser Klasse einer der zurzeit fortschrittlichsten RXR-Agonisten. Zukünftig kann außerdem der im Zuge der Arbeit etablierte computergestützte Arbeitsablauf die Optimierung von Fettsäuremimetika deutlich beschleunigen.
The bile acid activated transcription factor farnesoid X receptor (FXR) regulates numerous metabolic processes and is a rising target for the treatment of hepatic and metabolic disorders. FXR agonists have revealed efficacy in treating non-alcoholic steatohepatitis (NASH), diabetes and dyslipidemia. Here we characterize imatinib as first-in-class allosteric FXR modulator and report the development of an optimized descendant that markedly promotes agonist induced FXR activation in a reporter gene assay and FXR target gene expression in HepG2 cells. Differential effects of imatinib on agonist-induced bile salt export protein and small heterodimer partner expression suggest that allosteric FXR modulation could open a new avenue to gene-selective FXR modulators.
Non-alcoholic steatohepatitis (NASH) - a hepatic manifestation of the metabolic syndrome - is a multifactorial disease with alarming global prevalence. It involves steatosis, inflammation and fibrosis in the liver, thus demanding multiple modes of action for robust therapeutic efficacy. Aiming to fuse complementary validated anti-NASH strategies in a single molecule, we have designed and systematically optimized a scaffold for triple activation of farnesoid X receptor (FXR), peroxisome proliferator-activated receptor (PPAR) α and PPARδ. Pilot profiling of the resulting triple modulator demonstrated target engagement in native cellular settings and in mice, rendering it a suitable tool to probe the triple modulator concept in vivo. In DIO NASH in mice, the triple agonist counteracted hepatic inflammation and reversed hepatic fibrosis highlighting the potential of designed polypharmacology in NASH.
Designed multitarget ligands are a popular approach to generating efficient and safe drugs, and fragment-based strategies have been postulated as a versatile avenue to discover multitarget ligand leads. To systematically probe the potential of fragment-based multiple ligand discovery, we have employed a large fragment library for comprehensive screening on five targets chosen from proteins for which multitarget ligands have been successfully developed previously (soluble epoxide hydrolase, leukotriene A4 hydrolase, 5-lipoxygenase, retinoid X receptor, farnesoid X receptor). Differential scanning fluorimetry served as primary screening method before fragments hitting at least two targets were validated in orthogonal assays. Thereby, we obtained valuable fragment leads with dual-target engagement for six out of ten target combinations. Our results demonstrate the applicability of fragment-based approaches to identify starting points for polypharmacological compound development with certain limitations.