Refine
Year of publication
Has Fulltext
- yes (362)
Is part of the Bibliography
- no (362)
Keywords
- BESIII (16)
- e +-e − Experiments (12)
- Branching fraction (10)
- Hadronic decays (5)
- Particle and Resonance Production (5)
- Quarkonium (5)
- Charm Physics (4)
- Exotics (4)
- Lepton colliders (4)
- Spectroscopy (4)
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
Using data samples of e+e− collisions collected with the BESIII detector at eight center-of-mass energy points between 3.49 and 3.67 GeV, corresponding to an integrated luminosity of 670 pb−1, we present the upper limits of Born cross sections and the effective form factor for the process e+e−→Ω−Ω¯+. A fit to the cross sections using a pQCD-derived energy dependent function shows no significant threshold effect. The upper limit on the measured effective form factor is consistent with a theoretical prediction within the uncertainty of 1σ. These results provide new experimental information on the production mechanism of Ω.
We report a measurement of the cross section for the process e+e−→π+π−J/ψ around the X(3872) mass in search for the direct formation of e+e−→X(3872) through the two-photon fusion process. No enhancement of the cross section is observed at the X(3872) peak and an upper limit on the product of electronic width and branching fraction of X(3872)→π+π−J/ψ is determined to be Γee×B(X(3872)→π+π−J/ψ)<7.5×10−3eV at 90% confidence level under an assumption of total width of 1.19±0.21 MeV. This is an improvement of a factor of about 17 compared to the previous limit. Furthermore, using the latest result of B(X(3872)→π+π−J/ψ), an upper limit on the electronic width Γee of X(3872) is obtained to be <0.32eV at the 90% confidence level.
Using 15.6 fb−1 of e+e− collision data collected at twenty-four center-of-mass energies from 4.0 to 4.6 GeV with the BESIII detector, the helicity amplitudes of the process e+e−→π+π−ω are analyzed for the first time. Born cross section measurements of two-body intermediate resonance states with statistical significance greater than 5σ are presented, such as f0(500), f0(980), f2(1270), f0(1370), b1(1235)±, and ρ(1450)±. In addition, evidence of a resonance state in e+e−→π+π−ω production is found. The mass of this state obtained by line shape fitting is about 4.2 GeV/c2, which is consistent with the production of ψ(4160) or Y(4220).
Based on 7.33 fb−1 of e+e− collision data taken at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, we measure the branching fraction of D∗+s→D+sπ0 relative to that of D∗+s→D+sγ to be (6.16±0.43±0.19)%. The first uncertainty is statistical and the second one is systematic. By using the world average value of the branching fraction of D∗+s→D+se+e−, we determine the branching fractions of D∗+s→D+sγ and D∗+s→D+sπ0 to be (93.57±0.44±0.19)% and (5.76±0.44±0.19)%, respectively.
Based on 7.33 fb−1 of e+e− collision data taken at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, we measure the branching fraction of D∗+s→D+sπ0 relative to that of D∗+s→D+sγ to be (6.16±0.43±0.19)%. The first uncertainty is statistical and the second one is systematic. By using the world average value of the branching fraction of D∗+s→D+se+e−, we determine the branching fractions of D∗+s→D+sγ and D∗+s→D+sπ0 to be (93.57±0.44±0.19)% and (5.76±0.44±0.19)%, respectively.
Measurement of e⁺e⁻ → π⁺π⁻D⁺D⁻ cross sections at center-of-mass energies from 4.190 to 4.946 GeV
(2022)
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, we measure the cross sections of the e+e−→π+π−D+D− process at center-of-mass energies from 4.190 to 4.946 GeV with a partial reconstruction method. Two resonance structures are seen and the resonance parameters are determined from a fit to the cross section line shape. The first resonance we observe has a mass of (4373.1 ± 4.0 ± 2.2) MeV/c2 and a width of (146.5 ± 7.4 ± 1.3) MeV, in agreement with those of the Y(4390) state; the other resonance has a mass of (4706 ± 11 ± 4) MeV/c2, a width of (45 ± 28 ± 9) MeV, and a statistical significance of 4.1 standard deviations (σ). This is the first evidence for a vector state at this mass value. The spin-3 D-wave charmonium state X(3842) is searched for through the e+e−→π+π−X(3842)→π+π−D+D− process, and evidence with a significance of 4.2σ is found in the data samples with center-of-mass energies from 4.600 to 4.700 GeV.
Cross sections for the process e+e−→K0SK0SJ/ψ at center-of-mass energies from 4.128 to 4.950 GeV are measured using data samples with a total integrated luminosity of 21.2 fb−1 collected by the BESIII detector operating at the BEPCII storage ring. The Y(4230) state is observed in the energy dependence of the e+e−→K0SK0SJ/ψ cross section for the first time with a statistical significance of 26.0σ. In addition, an enhancement around 4.710 GeV, called the Y(4710), is seen with a statistical significance of 4.2σ. There is no clear structure around 4.484 GeV. Using a fit with a coherent sum of three Breit-Wigner functions, we determine the mass and width of the Y(4230) state to be 4226.9±6.6±21.9 MeV/c2 and 71.7±16.2±31.4 MeV, respectively, and the mass and width of the Y(4710) state to be 4704.0±52.3±69.5 MeV/c2 and 183.2±114.0±90.8 MeV, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the average Born cross section ratio of e+e−→K0SK0SJ/ψ to e+e−→K+K−J/ψ is measured to be 0.388+0.035−0.028±0.016, or 0.426+0.038−0.031±0.018 if three-body phase space is considered.
Cross sections for the process e+e−→K0SK0SJ/ψ at center-of-mass energies from 4.128 to 4.950 GeV are measured using data samples with a total integrated luminosity of 21.2 fb−1 collected by the BESIII detector operating at the BEPCII storage ring. The Y(4230) state is observed in the energy dependence of the e+e−→K0SK0SJ/ψ cross section for the first time with a statistical significance of 26.0σ. In addition, an enhancement around 4.710 GeV, called the Y(4710), is seen with a statistical significance of 4.2σ. There is no clear structure around 4.484 GeV. Using a fit with a coherent sum of three Breit-Wigner functions, we determine the mass and width of the Y(4230) state to be 4226.9±6.6±21.9 MeV/c2 and 71.7±16.2±31.4 MeV, respectively, and the mass and width of the Y(4710) state to be 4704.0±52.3±69.5 MeV/c2 and 183.2±114.0±90.8 MeV, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the average Born cross section ratio of e+e−→K0SK0SJ/ψ to e+e−→K+K−J/ψ is measured to be 0.388+0.035−0.028±0.016, or 0.426+0.038−0.031±0.018 if three-body phase space is considered.
Cross sections for the process e+e−→K0SK0SJ/ψ at center-of-mass energies from 4.128 to 4.950 GeV are measured using data samples with a total integrated luminosity of 21.2 fb−1 collected by the BESIII detector operating at the BEPCII storage ring. The Y(4230) state is observed in the energy dependence of the e+e−→K0SK0SJ/ψ cross section for the first time with a statistical significance of 26.0σ. In addition, an enhancement around 4.710~GeV, called the Y(4710), is seen with a statistical significance of 4.2σ. There is no clear structure around 4.484 GeV. Using a fit with a coherent sum of three Breit-Wigner functions, we determine the mass and width of the Y(4230) state to be 4226.9±6.6±21.9 MeV/c2 and 71.7±16.2±31.4 MeV, respectively, and the mass and width of the Y(4710) state to be 4704.0±52.3±69.5 MeV/c2 and 183.2±114.0±90.8 MeV, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the average Born cross section ratio of e+e−→K0SK0SJ/ψ to e+e−→K+K−J/ψ is measured to be 0.415+0.032−0.026±0.017, or 0.449+0.034−0.028±0.019 if three-body phase space is considered.