Refine
Year of publication
Language
- English (743)
Has Fulltext
- yes (743)
Is part of the Bibliography
- no (743)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Quarkonium (8)
- Charm Physics (7)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
The STAR Collaboration reports measurements of the transverse single-spin asymmetries, AN, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized pp collisions at s√ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include AN for inclusive jets and AN for jets containing a charged pion carrying a momentum fraction z>0.3 of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum pT and pseudorapidity η, as well as the hadron momentum fraction z and momentum transverse to the jet axis jT. These results probe higher momentum scales (Q2 up to ∼\,900 GeV2) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.
The STAR Collaboration reports measurements of the transverse single-spin asymmetries, AN, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized pp collisions at s√ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include AN for inclusive jets and AN for jets containing a charged pion carrying a momentum fraction z>0.3 of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum pT and pseudorapidity η, as well as the hadron momentum fraction z and momentum transverse to the jet axis jT. These results probe higher momentum scales (Q2 up to ∼\,900 GeV2) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first-order and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultrarelativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus, forming a short-lived vector meson (e.g., ρ0). In this experiment, the polarization was used in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ρ0 → π+π− decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ0 travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions and found to be 6.53 ± 0.06 fm (197Au) and 7.29 ± 0.08 fm (238U), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of nonidentical particles. Polarized photon-gluon fusion reveals quantum wave interference of non-identical particles and shape of high-energy nuclei.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at √sNN = 54.4 GeV
(2023)
Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second (v2) and third (v3) order azimuthal anisotropies of K0S, ϕ, Λ, Ξ and Ω at mid-rapidity (|y|<1) in Au+Au collisions at sNN−−−√ = 54.4 GeV measured by the STAR detector. The v2 and v3 are measured as a function of transverse momentum and centrality. Their energy dependence is also studied. v3 is found to be more sensitive to the change in the center-of-mass energy than v2. Scaling by constituent quark number is found to hold for v2 within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in v2 and v3 between baryons and anti-baryons are presented, and ratios of v3/v3/22 are studied and motivated by hydrodynamical calculations. The ratio of v2 of ϕ mesons to that of anti-protons (v2(ϕ)/v2(p¯)) shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton v2.
We present the first measurements of transverse momentum spectra of π±, K±, p(p¯) at midrapidity (|y|<0.1) in U+U collisions at √sNN = 193 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The centrality dependence of particle yields, average transverse momenta, particle ratios and kinetic freeze-out parameters are discussed. The results are compared with the published results from Au+Au collisions at sNN−−−−√= 200 GeV in STAR. The results are also compared to those from A Multi Phase Transport (AMPT) model.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, scaled by the number of binary nucleon-nucleon collisions, in sNN−−−√ = 200 GeV Au+Au collisions to p+p collisions (RAA), or in central to peripheral Au+Au collisions (RCP). We find the bottom-decay electron RAA and RCP to be significantly higher than that of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide clear evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.