Refine
Year of publication
Language
- English (987)
Has Fulltext
- yes (987)
Is part of the Bibliography
- no (987)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Hadron-Hadron Scattering (10)
- Particle and Resonance Production (10)
- Quarkonium (9)
- Charm Physics (6)
- LHC (6)
- QCD (6)
- Spectroscopy (6)
Institute
- Physik (864)
- Frankfurt Institute for Advanced Studies (FIAS) (337)
- Informatik (226)
- Medizin (7)
- Informatik und Mathematik (3)
- Biochemie und Chemie (2)
- Extern (2)
- Biowissenschaften (1)
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe = 0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe=0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
Using 7.93 fb−1 of e+e− collision data collected at the center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the absolute branching fractions of D0→K−e+νe, D0→K−μ+νμ, D+→K¯0e+νe, and D+→K¯0μ+νμ to be (3.509±0.009stat.±0.013syst.)%, (3.408±0.011stat.±0.013syst.)%, (8.856±0.039stat.±0.078syst.)%, and (8.661±0.046stat.±0.080syst.)%, respectively. By performing a simultaneous fit to the partial decay rates of these four decays, the product of the hadronic form factor fK+(0) and the modulus of the c→s CKM matrix element |Vcs| is determined to be fK+(0)|Vcs|=0.7162±0.0011stat.±0.0012syst.. Taking the value of |Vcs|=0.97349±0.00016 from the standard model global fit or that of fK+(0)=0.7452±0.0031 from the LQCD calculation as input, we derive the results fK+(0)=0.7357±0.0011stat.±0.0012syst. and |Vcs|=0.9611±0.0015stat.±0.0016syst.±0.0040LQCD.
The branching fraction of D+→K0Sπ0e+νe is measured for the first time using 7.93 fb−1 of e+e− annihilation data collected at the center-of-mass energy s√=3.773~GeV with the BESIII detector operating at the BEPCII collider, and is determined to be B(D+→K0Sπ0e+νe) = (0.881 ± 0.017stat. ± 0.016syst.)\%. Based on an analysis of the D+→K0Sπ0e+νe decay dynamics, we observe the S-wave and P-wave components with fractions of fS-wave = (6.13 ± 0.27stat. ± 0.30syst.)% and fK¯∗(892)0 = (93.88 ± 0.27stat. ± 0.29syst.)\%, respectively. From these results, we obtain the branching fractions B(D+→(K0Sπ0)S-wave e+νe) = (5.41 ± 0.35stat. ± 0.37syst.)×10−4 and B(D+→K¯∗(892)0e+νe) = (4.97 ± 0.11stat. ± 0.12syst.)\%. In addition, the hadronic form-factor ratios of D+→K¯∗(892)0e+νe at q2=0, assuming a single-pole dominance parameterization, are determined to be rV=V(0)A1(0)=1.43 ± 0.07stat. ± 0.03syst. and r2=A2(0)A1(0)=0.72 ± 0.06stat. ± 0.02syst.
We perform the first investigation of the process e+e−→K+K−ψ(2S) and report its Born cross sections over a range of center-of-mass energies from 4.699 to 4.951~GeV. The measurements are carried out using several partial reconstruction techniques using data samples collected by the BESIII detector with a total integrated luminosity of 2.5~fb−1. We search for new tetraquark candidates Z±cs in the decays Z±cs→K±ψ(2S). No significant Z±cs signals are observed.
Using (2712±14) × 106 ψ(2S) events collected with the BESIII detector at the BEPCII collider, we search for the decays ηc(2S)→ωω and ηc(2S)→ωϕ via the process ψ(2S)→γηc(2S). Evidence of ηc(2S)→ωω is found with a statistical significance of 3.2σ. The branching fraction is measured to be B(ηc(2S)→ωω)=(5.65±3.77(stat.)±5.32(syst.))×10−4. No statistically significant signal is observed for the decay ηc(2S)→ωϕ. The upper limit of the branching fraction at the 90\% confidence level is determined to be B(ψ(2S)→γηc(2S),ηc(2S)→ωϕ)<2.24×10−7. We also update the branching fractions of χcJ→ωω and χcJ→ωϕ decays via the ψ(2S)→γχcJ transition. The branching fractions are determined to be B(χc0→ωω)=(10.63±0.11±0.46)×10−4, B(χc1→ωω)=(6.39±0.07±0.29)×10−4, B(χc2→ωω)=(8.50±0.08±0.38)×10−4, B(χc0→ωϕ)=(1.18±0.03±0.05)×10−4, B(χc1→ωϕ)=(2.03±0.15±0.12)×10−5, and B(χc2→ωϕ)=(9.37±1.07±0.59)×10−6, where the first uncertainties are statistical and the second are systematic.
Using e+e− annihilation data sets corresponding to an integrated luminosity of 4.5 fb−1, collected with the BESIII detector at center-of-mass energies between 4.600 and 4.699 GeV, we report the first measurements of the absolute branching fractions B(Λ+c→pK0L)=(1.67±0.06±0.04)%, B(Λ+c→pK0Lπ+π−)=(1.69±0.10±0.05)%, and B(Λ+c→pK0Lπ0)=(2.02±0.13±0.05)%, where the first uncertainties are statistical and the second systematic. Combining with the known branching fractions of Λ+c→pK0S, Λ+c→pK0Sπ+π−, and Λ+c→pK0Sπ0, we present the first measurements of the K0S-K0L asymmetries R(Λ+c,K0S,LX)=B(Λ+c→K0SX)−B(Λ+c→K0LX)B(Λ+c→K0SX)+B(Λ+c→K0LX) in charmed baryon decays: R(Λ+c,pK0S,L)=−0.025±0.031, R(Λ+c,pK0S,Lπ+π−)=−0.027±0.048, and R(Λ+c,pK0S,Lπ0)=−0.015±0.046. No significant asymmetries within the uncertainties are observed.
The processes hc→γP(P=η′, η, π0) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The decay hc→γη is observed for the first time with the significance of 9.0σ, and the branching fraction is determined to be (3.77±0.55±0.13±0.26)×10−4, while B(hc→γη′) is measured to be (1.40±0.11±0.04±0.10)×10−3, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The combination of these results allows for a precise determination of Rhc=B(hc→γη)B(hc→γη′), which is calculated to be (27.0±4.4±1.0)%. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90% confidence level.
Based on (2712.4±14.3)×106 ψ(3686) events, we investigate four hadronic decay modes of the P-wave charmonium spin-singlet state hc(1P1)→h+h−π0/η (h=π or K) via the process ψ(3686)→π0hc at BESIII. The hc→π+π−π0 decay is observed with a significance of 9.6σ after taking into account systematic uncertainties. Evidences for hc→K+K−π0 and hc→K+K−η are found with significances of 3.5σ and 3.3σ, respectively, after considering the systematic uncertainties. The branching fractions of these decays are measured to be B(hc→π+π−π0)=(1.36±0.16±0.14)×10−3, B(hc→K+K−π0)=(3.26±0.84±0.36)×10−4, and B(hc→K+K−η)=(3.13±1.08±0.38)×10−4, where the first uncertainties are statistical and the second are systematic. No significant signal of hc→π+π−η is found, and the upper limit of its decay branching fraction is determined to be B(hc→π+π−η)<4.0×10−4 at 90% confidence level.
Model-independent determination of the strong-phase difference between D⁰ and D̄⁰ → π⁺π⁻π⁺π⁻ decays
(2024)
Measurements of the strong-phase difference between D0 and D¯0→π+π−π+π− are performed in bins of phase space. The study exploits a sample of quantum-correlated DD¯ mesons collected by the BESIII experiment in e+e− collisions at a center-of-mass energy of 3.773~GeV, corresponding to an integrated luminosity of 2.93~fb−1. Here, D denotes a neutral charm meson in a superposition of flavor eigenstates. The reported results are valuable for measurements of the CP-violating phase γ (also denoted ϕ3) in B±→DK±, D→π+π−π+π− decays, and the binning schemes are designed to provide good statistical sensitivity to this parameter. The expected uncertainty on γ arising from the precision of the strong-phase measurements, when applied to very large samples of B-meson decays, is around 1.5∘ or 2∘, depending on the binning scheme. The binned strong-phase parameters are combined to give a value of F4π+=0.746±0.010±0.004 for the CP-even fraction of D0→π+π−π+π− decays, which is around 30\% more precise than the previous best measurement of this quantity.