Refine
Year of publication
Language
- English (122)
Has Fulltext
- yes (122)
Is part of the Bibliography
- no (122)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Elastic scattering (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Polarization (2)
- RHIC (2)
- STAR (2)
Institute
The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at √sNN = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN−−−−√ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN−−−−√ = 19.6 GeV for 0.4<Mee<0.75 GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN−−−−√ = 17.3 GeV. For sNN−−−−√ = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN−−−−√ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN−−−−√ = 200 GeV is longer than those in peripheral collisions and at lower energies.
Di-hadron correlations with identified leading hadrons in 200 GeV Au+Au and d+Au collisions at STAR
(2015)
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). In 5-30% central collisions a sizable difference is present between the v1(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v1 for both pions and protons, none of them can describe v1(y) for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). The proton v1(y) slope is found to be much closer to zero compared to antiprotons. A sizable difference is seen between v1 of protons and antiprotons in 5-30% central collisions. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. Anti-flow alone cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
We report the first measurements of cumulants, up to 4th order, of deuteron number distributions and proton-deuteron correlations in Au+Au collisions recorded by the STAR experiment in phase-I of Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider. Deuteron cumulants, their ratios, and proton-deuteron mixed cumulants are presented for different collision centralities covering a range of center-of-mass energy per nucleon pair sNN−−−−√~=~7.7 to 200~GeV. It is found that the cumulant ratios at lower collision energies favor a canonical ensemble over a grand canonical ensemble in thermal models. An anti-correlation between proton and deuteron multiplicity is observed across all collision energies and centralities, consistent with the expectation from global baryon number conservation. The UrQMD model coupled with a phase-space coalescence mechanism qualitatively reproduces the collision-energy dependence of cumulant ratios and proton-deuteron correlations.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546~GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.