Refine
Year of publication
Language
- English (670)
Has Fulltext
- yes (670)
Is part of the Bibliography
- no (670)
Keywords
- BESIII (19)
- e +-e − Experiments (16)
- Branching fraction (12)
- Particle and Resonance Production (9)
- Quarkonium (8)
- Charm Physics (6)
- LHC (6)
- Spectroscopy (6)
- Hadronic decays (5)
- Heavy-ion collisions (5)
Institute
- Physik (558)
- Frankfurt Institute for Advanced Studies (FIAS) (231)
- Informatik (121)
- Informatik und Mathematik (3)
- Biochemie und Chemie (1)
- Medizin (1)
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe = 0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe=0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation.
Using 7.93 fb−1 of e+e− collision data collected at the center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the absolute branching fractions of D0→K−e+νe, D0→K−μ+νμ, D+→K¯0e+νe, and D+→K¯0μ+νμ to be (3.509±0.009stat.±0.013syst.)%, (3.408±0.011stat.±0.013syst.)%, (8.856±0.039stat.±0.078syst.)%, and (8.661±0.046stat.±0.080syst.)%, respectively. By performing a simultaneous fit to the partial decay rates of these four decays, the product of the hadronic form factor fK+(0) and the modulus of the c→s CKM matrix element |Vcs| is determined to be fK+(0)|Vcs|=0.7162±0.0011stat.±0.0012syst.. Taking the value of |Vcs|=0.97349±0.00016 from the standard model global fit or that of fK+(0)=0.7452±0.0031 from the LQCD calculation as input, we derive the results fK+(0)=0.7357±0.0011stat.±0.0012syst. and |Vcs|=0.9611±0.0015stat.±0.0016syst.±0.0040LQCD.
The processes hc→γP(P=η′, η, π0)) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The branching fractions of hc→γη′ and hc→γη are measured to be (1.40±0.11±0.04±0.10)×10−3 and (3.77±0.55±0.13±0.26)×10−4, respectively, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The ratio Rhc=B(hc→γη)B(hc→γη′) is calculated to be (27.0±4.4±1.0)%. The measurements are consistent with the previous results with improved precision by a factor of 2. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90\% confidence level.
Based on (2712.4±14.3)×106 ψ(3686) events, we investigate four hadronic decay modes of the P-wave charmonium spin-singlet state hc(1P1)→h+h−π0/η (h=π or K) via the process ψ(3686)→π0hc at BESIII. The hc→π+π−π0 decay is observed with a significance of 9.6σ after taking into account systematic uncertainties. Evidences for hc→K+K−π0 and hc→K+K−η are found with significances of 3.5σ and 3.3σ, respectively, after considering the systematic uncertainties. The branching fractions of these decays are measured to be B(hc→π+π−π0)=(1.36±0.16±0.14)×10−3, B(hc→K+K−π0)=(3.26±0.84±0.36)×10−4, and B(hc→K+K−η)=(3.13±1.08±0.38)×10−4, where the first uncertainties are statistical and the second are systematic. No significant signal of hc→π+π−η is found, and the upper limit of its decay branching fraction is determined to be B(hc→π+π−η)<4.0×10−4 at 90% confidence level.
Using e+e− annihilation data sets corresponding to an integrated luminosity of 4.5 fb−1, collected with the BESIII detector at center-of-mass energies between 4.600 and 4.699 GeV, we report the first measurements of the absolute branching fractions B(Λ+c→pK0L)=(1.67±0.06±0.04)%, B(Λ+c→pK0Lπ+π−)=(1.69±0.10±0.05)%, and B(Λ+c→pK0Lπ0)=(2.02±0.13±0.05)%, where the first uncertainties are statistical and the second systematic. Combining with the known branching fractions of Λ+c→pK0S, Λ+c→pK0Sπ+π−, and Λ+c→pK0Sπ0, we present the first measurements of the K0S-K0L asymmetries R(Λ+c,K0S,LX)=B(Λ+c→K0SX)−B(Λ+c→K0LX)B(Λ+c→K0SX)+B(Λ+c→K0LX) in charmed baryon decays: R(Λ+c,pK0S,L)=−0.025±0.031, R(Λ+c,pK0S,Lπ+π−)=−0.027±0.048, and R(Λ+c,pK0S,Lπ0)=−0.015±0.046. No significant asymmetries within the uncertainties are observed.
We perform the first investigation of the process e+e−→K+K−ψ(2S) and report its Born cross sections over a range of center-of-mass energies from 4.699 to 4.951~GeV. The measurements are carried out using several partial reconstruction techniques using data samples collected by the BESIII detector with a total integrated luminosity of 2.5~fb−1. We search for new tetraquark candidates Z±cs in the decays Z±cs→K±ψ(2S). No significant Z±cs signals are observed.
The e+e−→D+sDs1(2536)− and e+e−→D+sD∗s2(2573)− processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of Ds1(2536)−→D¯∗0K− and D∗s2(2573)−→D¯0K− are measured for the first time to be (35.9±4.8±3.5)% and (37.4±3.1±4.6)%, respectively. The measurements are in tension with predictions based on the assumption that the Ds1(2536) and D∗s2(2573) are dominated by a bare cs¯ component. The e+e−→D+sDs1(2536)− and e+e−→D+sD∗s2(2573)− cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of 15σ in the e+e−→D+sD∗s2(2573)− process. It could be the Y(4626) found by the Belle collaboration in the D+sDs1(2536)− final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes.
Model-independent determination of the strong-phase difference between D⁰ and D̄⁰ → π⁺π⁻π⁺π⁻ decays
(2024)
Measurements of the strong-phase difference between D0 and D¯0→π+π−π+π− are performed in bins of phase space. The study exploits a sample of quantum-correlated DD¯ mesons collected by the BESIII experiment in e+e− collisions at a center-of-mass energy of 3.773~GeV, corresponding to an integrated luminosity of 2.93~fb−1. Here, D denotes a neutral charm meson in a superposition of flavor eigenstates. The reported results are valuable for measurements of the CP-violating phase γ (also denoted ϕ3) in B±→DK±, D→π+π−π+π− decays, and the binning schemes are designed to provide good statistical sensitivity to this parameter. The expected uncertainty on γ arising from the precision of the strong-phase measurements, when applied to very large samples of B-meson decays, is around 1.5∘ or 2∘, depending on the binning scheme. The binned strong-phase parameters are combined to give a value of F4π+=0.746±0.010±0.004 for the CP-even fraction of D0→π+π−π+π− decays, which is around 30\% more precise than the previous best measurement of this quantity.
The processes hc→γP(P=η′, η, π0) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The decay hc→γη is observed for the first time with the significance of 9.0σ, and the branching fraction is determined to be (3.77±0.55±0.13±0.26)×10−4, while B(hc→γη′) is measured to be (1.40±0.11±0.04±0.10)×10−3, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The combination of these results allows for a precise determination of Rhc=B(hc→γη)B(hc→γη′), which is calculated to be (27.0±4.4±1.0)%. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90% confidence level.