Refine
Document Type
- Article (2)
- Conference Proceeding (2)
- Part of a Book (1)
- Contribution to a Periodical (1)
- Report (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Data protection (2)
- (mobile) Internet (1)
- Cybersecurity (1)
- Data loss prevention (1)
- Data security (1)
- Digital service chain (1)
- Ethical issues (1)
- GDPR (1)
- Informational self-determination (1)
- Online privacy (1)
Institute
- Wirtschaftswissenschaften (7)
- Präsidium (1)
The Dagstuhl Perspectives Workshop "Online Privacy: Towards Informational Self-Determination on the Internet" (11061) has been held in February 6-11, 2011 at Schloss Dagstuhl. 30 participants from academia, public sector, and industry have identified the current status-of-the-art of and challenges for online privacy as well as derived recommendations for improving online privacy. Whereas the Dagstuhl Manifesto of this workshop concludes the results of the working groups and panel discussions, this article presents the talks of this workshop by their abstracts.
Plattformen für Social Communities im Internet, wie Facebook, StudiVZ und XING, haben in den vergangenen Jahren rasant an Popularität gewonnen. Auf ihnen versammeln sich bereits heute Millionen von Nutzern weltweit. Sie verbinden sich über virtuelle Freundeslisten und tauschen sich über gemeinsame Interessen und Aktivitäten aus. Immer häufger werden dazu auch mobile Endgeräte wie Handys verwendet, erlauben diese doch ständig in Kontakt mit der Community zu bleiben. Allerdings wollen viele Nutzer längst nicht jedem Mitglied einer Community alles preisgeben. Doch wie lässt sich die Privatsphäre in solchen Communities besser schützen? Dieser Frage geht das Forschungsprojekt PICOS nach.
Enabling cybersecurity and protecting personal data are crucial challenges in the development and provision of digital service chains. Data and information are the key ingredients in the creation process of new digital services and products. While legal and technical problems are frequently discussed in academia, ethical issues of digital service chains and the commercialization of data are seldom investigated. Thus, based on outcomes of the Horizon2020 PANELFIT project, this work discusses current ethical issues related to cybersecurity. Utilizing expert workshops and encounters as well as a scientific literature review, ethical issues are mapped on individual steps of digital service chains. Not surprisingly, the results demonstrate that ethical challenges cannot be resolved in a general way, but need to be discussed individually and with respect to the ethical principles that are violated in the specific step of the service chain. Nevertheless, our results support practitioners by providing and discussing a list of ethical challenges to enable legally compliant as well as ethically acceptable solutions in the future.
The aim of this study was to identify and evaluate different de-identification techniques that may be used in several mobility-related use cases. To do so, four use cases have been defined in accordance with a project partner that focused on the legal aspects of this project, as well as with the VDA/FAT working group. Each use case aims to create different legal and technical issues with regards to the data and information that are to be gathered, used and transferred in the specific scenario. Use cases should therefore differ in the type and frequency of data that is gathered as well as the level of privacy and the speed of computation that is needed for the data. Upon identifying use cases, a systematic literature review has been performed to identify suitable de-identification techniques to provide data privacy. Additionally, external databases have been considered as data that is expected to be anonymous might be reidentified through the combination of existing data with such external data.
For each case, requirements and possible attack scenarios were created to illustrate where exactly privacy-related issues could occur and how exactly such issues could impact data subjects, data processors or data controllers. Suitable de-identification techniques should be able to withstand these attack scenarios. Based on a series of additional criteria, de-identification techniques are then analyzed for each use case. Possible solutions are then discussed individually in chapters 6.1 - 6.2. It is evident that no one-size-fits-all approach to protect privacy in the mobility domain exists. While all techniques that are analyzed in detail in this report, e.g., homomorphic encryption, differential privacy, secure multiparty computation and federated learning, are able to successfully protect user privacy in certain instances, their overall effectiveness differs depending on the specifics of each use case.
Privacy and its protection is an important part of the culture in the USA and Europe. Literature in this field lacks empirical data from Japan. Thus, it is difficult– especially for foreign researchers – to understand the situation in Japan. To get a deeper understanding we examined the perception of a topic that is closely related to privacy: the perceived benefits of sharing data and the willingness to share in respect to the benefits for oneself, others and companies. We found a significant impact of the gender to each of the six analysed constructs.
Augmented reality (AR) gained much public attention since the success of Pok´emon Go in 2016. Technology companies like Apple or Google are currently focusing primarily on mobile AR (MAR) technologies, i.e. applications on mobile devices, like smartphones or tablets. Associated privacy issues have to be investigated early to foster market adoption. This is especially relevant since past research found several threats associated with the use of smartphone applications. Thus, we investigate two of the main privacy risks for MAR application users based on a sample of 19 of the most downloaded MAR applications for Android. First, we assess threats arising from bad privacy policies based on a machine-learning approach. Second, we investigate which smartphone data resources are accessed by the MAR applications. Third, we combine both approaches to evaluate whether privacy policies cover certain data accesses or not. We provide theoretical and practical implications and recommendations based on our results.
Es geht um Werbung, Betrug oder die Optimierung von Geschäftsmodellen: Verbraucherdaten sind ein kostbares Gut, das Kreditgeber und Versicherer genauso interessiert wie Händler und Kriminelle. Kai Rannenberg, Professor für Mobile Business & Multilateral Security an der Goethe-Universität, forscht zur Cybersicherheit. Dirk Frank hat mit dem Wirtschaftsinformatiker über Datenschutz, Hackerangriffe und das Auto als »Handy auf Rädern« gesprochen.