Refine
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Ustilaginomycotina (1)
- comparative genomics (1)
- convergent evolution (1)
- evolutionary biology (1)
- metabolic pathways (1)
- positive selection (1)
- smut fungi (1)
Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle.
Background Vasoplegic syndrome is frequently observed during cardiac surgery and resembles a complication of high mortality and morbidity. There is a clinical need for therapy and prevention of vasoplegic syndrome during complex cardiac surgical procedures. Therefore, we investigated different strategies in a porcine model of vasoplegia.
Methods We evaluated new medical therapies and prophylaxis to avoid vasoplegic syndrome in a porcine model. After induction of anesthesia, cardiopulmonary bypass was established through median sternotomy and central cannulation. Prolonged aortic cross-clamping (120 min) simulated a complex surgical procedure. The influence of sevoflurane-guided anesthesia (sevoflurane group) and the administration of glibenclamide (glibenclamide group) were compared to a control group, which received standard anesthesia using propofol. Online hemodynamic assessment was performed using PiCCO® measurements. In addition, blood and tissue samples were taken to evaluate hemodynamic effects and the degree of inflammatory response.
Results Glibenclamide was able to break through early vasoplegic syndrome by raising the blood pressure and systemic vascular resistance as well as less need of norepinephrine doses. Sevoflurane reduced the occurrence of the vasoplegic syndrome in the mean of stable blood pressure and less need of norepinephrine doses.
Conclusion Glibenclamide could serve as a potent drug to reduce effects of vasoplegic syndrome. Sevoflurane anesthesia during cardiopulmonary bypass shows less occurrence of vasoplegic syndrome and therefore could be used to prevent it in high-risk patients.
Clinical Perspective; what is new?
* to our knowledge, this is the first randomized in vivo study evaluating the hemodynamic effects of glibenclamide after the onset of vasoplegic syndrome
* furthermore according to literature research, there is no study showing the effect of sevoflurane-guided anesthesia on the occurrence of a vasoplegic syndrome
Clinical Perspective; clinical implications?
to achieve better outcomes after complex cardiac surgery there is a need for optimized drug therapy and prevention of the vasoplegic syndrome