Refine
Year of publication
Document Type
- Article (77)
- Conference Proceeding (2)
Language
- English (79)
Has Fulltext
- yes (79)
Is part of the Bibliography
- no (79)
Keywords
- Patient blood management (4)
- COVID-19 (3)
- Outcome (3)
- SARS-CoV-2 (3)
- Transfusion (3)
- anaemia (3)
- iron deficiency (3)
- patient blood management (3)
- ARDS (2)
- Blood loss (2)
Institute
Introduction: Hypothermia improves survival and neurological recovery after cardiac arrest. Pro-inflammatory cytokines have been implicated in focal cerebral ischemia/reperfusion in-jury. It is unknown whether cardiac arrest also triggers the release of cerebral inflammatory molecules, and whether therapeutic hypothermia alters this inflammatory response. This study sought to examine whether hypothermia or the combination of hypothermia with anes-thetic postconditioning with sevoflurane affect cerebral inflammatory response after cardio-pulmonary resuscitation. Methods: Thirty pigs (28 - 34kg) were subjected to cardiac arrest following temporary coro-nary artery occlusion. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. Return of spontaneous circulation was achieved in 21 animals who were randomized to ei-ther normothermia at 38degreesC, hypothermia at 33degreesC or hypothermia at 33degreesC combined with se-voflurane (each group: n = 7) for 24 hours. The effects of hypothermia and the combination of hypothermia with sevoflurane on cerebral inflammatory response after cardiopulmonary resuscitation were studied using tissue samples from the cerebral cortex of pigs euthanized after 24 hours and employing quantitative RT-PCR and ELISA techniques. Results: Global cerebral ischemia following resuscitation resulted in significant upregulation of cerebral tissue inflammatory cytokine mRNA expression (mean +/- SD; interleukin (IL)-1beta 8.7 +/- 4.0, IL-6 4.3 +/- 2.6, IL-10 2.5 +/- 1.6, tumor necrosis factor (TNF)alpha 2.8 +/- 1.8, intercellular adhesion molecule-1 (ICAM-1) 4.0 +/- 1.9-fold compared with sham control) and IL-1beta protein concentration (1.9 +/- 0.6-fold compared with sham control). Hypothermia was associated with a significant (P <0.05 versus normothermia) reduction in cerebral inflammatory cytokine mRNA expression (IL-1beta 1.7 +/- 1.0, IL-6 2.2 +/- 1.1, IL-10 0.8 +/- 0.4, TNFalpha 1.1 +/- 0.6, ICAM-1 1.9 +/- 0.7-fold compared with sham control). These results were also confirmed for IL-1beta on protein level. Experimental settings employing hypothermia in combination with sevoflurane showed that the volatile anesthetic did not confer additional anti-inflammatory effects com-pared with hypothermia alone. Conclusions: Mild therapeutic hypothermia resulted in decreased expression of typical ce-rebral inflammatory mediators after cardiopulmonary resuscitation. This may confer, at least in part, neuroprotection following global cerebral ischemia and resuscitation.
Background: Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia. Methodology/Principal Findings: Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1beta and IL-6 mRNA up-regulation, and (iv) IL-1beta protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached. Conclusions/Significance: Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression.
Introduction: Systemic inflammation (e.g. following surgery) involves Toll-like receptor (TLR) signaling and leads to an endocrine stress response. This study aims to investigate a possible influence of TLR2 and TLR4 single nucleotide polymorphisms (SNPs) on perioperative adrenocorticotropic hormone (ACTH) and cortisol regulation in serum of cardiac surgical patients. To investigate the link to systemic inflammation in this context, we additionally measured 10 different cytokines in the serum. Methods: 338 patients admitted for elective cardiac surgery were included in this prospective observational clinical cohort study. Genomic DNA of patients was screened for TLR2 and TLR4 SNPs. Serum concentrations of ACTH, cortisol, interferon (IFN)-, interleukin (IL)-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)- and granulocyte macro-phage-colony stimulating factor (GM-CSF) were determined before surgery, immediately post surgery and on the first postoperative day. Results: 13 patients were identified as TLR2 SNP carrier, 51 as TLR4 SNP carrier and 274 pa-tients as non-carrier. Basal levels of ACTH, cortisol and cytokines did not differ between groups. In all three groups a significant, transient perioperative rise of cortisol could be ob-served. However, only in the non-carrier group this was accompanied by a significant ACTH rise, TLR4 SNP carriers had significant lower ACTH levels compared to non-carriers ((mean[95% confidence intervals]) non-carriers: 201.9[187.7 to 216.1]pg/ml; TLR4 SNP car-riers: 149.9[118.4 to 181.5]pg/ml; TLR2 SNP carriers: 176.4[110.5 to 242.3]pg/ml). Compared to non-carriers, TLR4 SNP carriers showed significant lower serum IL-8, IL-10 and GM-CSF peaks ((mean[95% confidence intervals]): IL-8: non-carriers: 42.6[36.7 to 48.5]pg/ml, TLR4 SNP carriers: 23.7[10.7 to 36.8]pg/ml; IL-10: non-carriers: 83.8[70.3 to 97.4]pg/ml, TLR4 SNP carriers: 54.2[24.1 to 84.2]pg/ml; GM-CSF: non-carriers: 33.0[27.8 to 38.3]pg/ml, TLR4 SNP carriers: 20.2[8.6 to 31.8]pg/ml). No significant changes over time or between the groups were found for the other cytokines. Conclusions: Regulation of the immunoendocrine stress response during systemic inflamma-tion is influenced by the presence of a TLR4 SNP. Cardiac surgical patients carrying this ge-notype showed decreased serum concentrations of ACTH, IL-8, IL-10 and GM-CSF. This finding might have impact on interpreting previous and designing future trials on diagnosing and modulating immunoendocrine dysregulation (e.g. adrenal insufficiency) during systemic inflammation and sepsis.
Introduction: Immune paralysis with massive T-cell apoptosis is a central pathogenic event during sepsis and correlates with septic patient mortality. Previous observations implied a crucial role of peroxisome proliferator-activated receptor gamma (PPARγ) during T-cell apoptosis.
Methods: To elucidate mechanisms of PPARγ-induced T-cell depletion, we used an endotoxin model as well as the caecal ligation and puncture sepsis model to imitate septic conditions in wild-type versus conditional PPARγ knockout (KO) mice.
Results: PPARγ KO mice showed a marked survival advantage compared with control mice. Their T cells were substantially protected against sepsis-induced death and showed a significantly higher expression of the pro-survival factor IL-2. Since PPARγ is described to repress nuclear factor of activated T cells (NFAT) transactivation and concomitant IL-2 expression, we propose inhibition of NFAT as the underlying mechanism allowing T-cell apoptosis. Corroborating our hypothesis, we observed up-regulation of the pro-apoptotic protein BIM and downregulation of the anti-apoptotic protein Bcl-2 in control mice, which are downstream effector proteins of IL-2 receptor signaling. Application of a neutralizing anti-IL-2 antibody reversed the pro-survival effect of PPARγ-deficient T cells and confirmed IL-2-dependent apoptosis during sepsis.
Conclusion: Apparently antagonizing PPARγ in T cells might improve their survival during sepsis, which concomitantly enhances defence mechanisms and possibly provokes an increased survival of septic patients.
Introduction: It has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations. Methods: Three intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course. Results: Patients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes. Conclusions: Carriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery.
Characterization of neonates born to mothers with SARS-CoV-2 infection: review and meta-analysis
(2020)
Characterization of neonates born to mothers with SARS-CoV-2 infection has been partially carried out. There has been no systematic review providing a holistic neonatal presentation including possible vertical transmission. A systematic literature search was performed using PubMed, Google Scholar and Web of Science up to June, 6 2020. Studies on neonates born to mothers with SARS-CoV-2 infection were included. A binary random effect model was used for prevalence and 95% confidence interval. 32 studies involving 261 neonates were included in meta-analysis. Most neonates born to infected mothers did not show any clinical abnormalities (80.4%). Clinical features were dyspnea in 11 (42.3%) and fever in 9 newborns (19.1%). Of 261 neonates, 120 neonates were tested for infection, of whom 12 (10.0%) tested positive. Swabs from placenta, cord blood and vaginal secretion were negative. Neonates are mostly non affected by the mother's SARS-CoV-2 infection. The risk of vertical transmission is low.
Transfusion of red blood cells (RBC) in patients undergoing major elective cranial surgery is associated with increased morbidity, mortality and prolonged hospital length of stay (LOS). This retrospective single center study aims to identify the clinical outcome of RBC transfusions on skull base and non-skull base meningioma patients including the identification of risk factors for RBC transfusion. Between October 2009 and October 2016, 423 patients underwent primary meningioma resection. Of these, 68 (16.1%) received RBC transfusion and 355 (83.9%) did not receive RBC units. Preoperative anaemia rate was significantly higher in transfused patients (17.7%) compared to patients without RBC transfusion (6.2%; p = 0.0015). In transfused patients, postoperative complications as well as hospital LOS was significantly higher (p < 0.0001) compared to non-transfused patients. After multivariate analyses, risk factors for RBC transfusion were preoperative American Society of Anaesthesiologists (ASA) physical status score (p = 0.0247), tumor size (p = 0.0006), surgical time (p = 0.0018) and intraoperative blood loss (p < 0.0001). Kaplan-Meier curves revealed significant influence on overall survival by preoperative anaemia, RBC transfusion, smoking, cardiovascular disease, preoperative KPS ≤ 60% and age (elderly ≥ 75 years). We concluded that blood loss due to large tumors or localization near large vessels are the main triggers for RBC transfusion in meningioma patients paired with a potential preselection that masks the effect of preoperative anaemia in multivariate analysis. Further studies evaluating the impact of preoperative anaemia management for reduction of RBC transfusion are needed to improve the clinical outcome of meningioma patients.
Purpose: Trauma is the leading cause of death in children. In adults, blood transfusion and fluid resuscitation protocols changed resulting in a decrease of morbidity and mortality over the past 2 decades. Here, transfusion and fluid resuscitation practices were analysed in severe injured children in Germany.
Methods: Severely injured children (maximum Abbreviated Injury Scale (AIS) ≥ 3) admitted to a certified trauma-centre (TraumaZentrum DGU®) between 2002 and 2017 and registered at the TraumaRegister DGU® were included and assessed regarding blood transfusion rates and fluid therapy.
Results: 5,118 children (aged 1–15 years) with a mean ISS 22 were analysed. Blood transfusion rates administered until ICU admission decreased from 18% (2002–2005) to 7% (2014–2017). Children who are transfused are increasingly seriously injured. ISS has increased for transfused children aged 1–15 years (2002–2005: mean 27.7–34.4 in 2014–2017). ISS in non-transfused children has decreased in children aged 1–15 years (2002–2005: mean 19.6 to mean 17.6 in 2014–2017). Mean prehospital fluid administration decreased from 980 to 549 ml without affecting hemodynamic instability.
Conclusion: Blood transfusion rates and amount of fluid resuscitation decreased in severe injured children over a 16-year period in Germany. Restrictive blood transfusion and fluid management has become common practice in severe injured children. A prehospital restrictive fluid management strategy in severely injured children is not associated with a worsened hemodynamic state, abnormal coagulation or base excess but leads to higher hemoglobin levels.
Background Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-alpha) and interleukin-1beta (IL-1beta). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo. Methods Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured. Results In WT mice, CpG-ODN induced a strong activation of pulmonary NFKB as well as a significant increase in pulmonary TNF-alpha and IL-1beta mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice. Conclusion This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9.
Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bß15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bß15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bß15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bß15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bß15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bß15-42 is confirmed in Fyn -/- mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bß15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock.