Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- correlated electrons (2)
- TPSC (1)
- high-Tc superconductivity (1)
- many-body method (1)
- multi-orbital Hubbard model (1)
- non-perturbative methods (1)
Institute
- Physik (3)
Diese Thesis befasst sich mit dem Problem korrelierter Elektronensysteme in realen Materialien. Ausgangspunkt hierbei ist die quantenmechanische Beschreibung dieser Systeme im Rahmen der sogenannten Kohn-Scham Dichtefunktionaltheorie, welche die Elektronen der Kristallsysteme als effektiv nicht-wechselwirkende Teilchen beschreibt.
Während diese Modellierung im Falle vieler Materialklassen erfolgreich ist, unterscheiden sich die korrelierten Elektronensysteme dadurch, dass der kollektive Charakter der Elektronendynamik nicht zu vernachlässigen ist.
Um diese Korrelationseffekte genauer zu untersuchen, verwenden wir in dieser Arbeit das Hubbard-Modell, welches mit der projektiven Wannierfunktionsmethode aus der Kohn-Scham Dichtefunktionaltheorie konstruiert werden kann.
Das Hubbard-Modell umfasst hierbei nur die lokale Elektron-Elektron-Wechselwirkung auf einem Gitter. Auch wenn das Modell augenscheinlich sehr simpel ist, existieren exakte Lösungen nur in bestimmten Grenzfällen. Dies macht die Entwicklung approximativer Ansätze erforderlich, wobei die Weiterentwicklung der sogenannten Two-Particle Self-Consistent Methode (TPSC) eine zentrale Rolle dieser Arbeit einnimmt.
Bei TPSC handelt es sich um eine Vielteilchenmethode, die in der Sprache funktionaler Ableitungen und sogenannter conserving approximations hergeleitet werden kann.
Der zentrale Gedanke dabei ist, den effektiven Wechselwirkungsvertex als statisch und lokal zu approximieren. Dies wiederum erlaubt die Bewegungsgleichung des Systems
erheblich zu vereinfachen, sodass eine numerische approximative Lösung des Hubbard-Modells möglich wird. Vorsetzung hierbei ist nur, dass sich das System in der normalleitenden Phase befindet und die bei Phasenübergängen entstehenden Fluktuationen nicht zu groß sind.
Während diese Methode ursprünglich von Y. M. Vilk und A.-M. Tremblay für das Ein-Orbital Hubbard-Modell entwickelt wurde, stellen wir in dieser Arbeit eine Erweiterung auf Viel-Orbital-Systeme vor.
Im Falle mehrerer Orbitale treten in der TPSC-Herleitung einzelne Komplikationen auf, die mit weiteren Approximationen behandelt werden müssen. Diese werden anhand eines einfachen Zwei-Orbital Modell-Systems diskutiert und die TPSC-Ergebnisse werden darüber hinaus mit den Ergebnissen der etablierten dynamischen Molekularfeldnährung verglichen.
In diesem Zusammenhang werden auch mögliche zukünftige Erweiterungen bzw. Verbesserungen von TPSC diskutiert.
Ein weiterer wichtiger Aspekt ist die Anwendung von TPSC auf reale Materialien.
In diesem Zusammenhang werden in dieser Arbeit die supraleitenden Eigenschaften der organischen K-(ET)2X Systeme untersucht. Hierbei lassen die TPSC-Resultate darauf schließen, dass das populäre Dimer-Modell, welches zur Beschreibung dieser Materialien herangezogen wird, nicht genügt um die experimentell bestimmten kritischen Temperaturen zu erklären und dass das komplexere Molekülmodell weitere exotische supraleitende Lösungen zulässt.
Schließlich untersuchen wir außerdem die elektronischen Eigenschaften des eisenbasierten Supraleiters LiFeAs und diskutieren inwieweit nicht-lokale Korrelationseffekte, welche durch TPSC aufgelöst werden können, die experimentellen Daten reproduzieren.
One of the most challenging problems in solid state systems is the microscopic analysis of electronic correlations. A paramount minimal model that encodes correlation effects is the Hubbard Hamiltonian, which—regardless of its simplicity—is exactly solvable only in a few limiting cases and approximate many-body methods are required for its solution. In this review, an overview on the non-perturbative two-particle self-consistent method (TPSC), which was originally introduced to describe the electronic properties of the single-band Hubbard model, is presented. A detailed derivation of the multi-orbital generalization of TPSC is introduced here and particular features of the method on exemplary interacting models in comparison to dynamical mean-field theory results are discussed.
Deconfinement of Mott localized electrons into topological and spin–orbit-coupled Dirac fermions
(2020)
The interplay of electronic correlations, spin–orbit coupling and topology holds promise for the realization of exotic states of quantum matter. Models of strongly interacting electrons on honeycomb lattices have revealed rich phase diagrams featuring unconventional quantum states including chiral superconductivity and correlated quantum spin Hall insulators intertwining with complex magnetic order. Material realizations of these electronic states are, however, scarce or inexistent. In this work, we propose and show that stacking 1T-TaSe2 into bilayers can deconfine electrons from a deep Mott insulating state in the monolayer to a system of correlated Dirac fermions subject to sizable spin–orbit coupling in the bilayer. 1T-TaSe2 develops a Star-of-David charge density wave pattern in each layer. When the Star-of-David centers belonging to two adyacent layers are stacked in a honeycomb pattern, the system realizes a generalized Kane–Mele–Hubbard model in a regime where Dirac semimetallic states are subject to significant Mott–Hubbard interactions and spin–orbit coupling. At charge neutrality, the system is close to a quantum phase transition between a quantum spin Hall and an antiferromagnetic insulator. We identify a perpendicular electric field and the twisting angle as two knobs to control topology and spin–orbit coupling in the system. Their combination can drive it across hitherto unexplored grounds of correlated electron physics, including a quantum tricritical point and an exotic first-order topological phase transition.