Refine
Document Type
- Article (3)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- atomic volume (2)
- high pressure (2)
- packing density (2)
- Cesium (1)
- High pressure (1)
- Iodine (1)
- Lithium (1)
- Packing density (1)
- Sodium (1)
- Valence (1)
Institute
The volume changes of lithium and sodium under pressure are discussed with respect to the packing density of the atoms and their valence. In densely packed Li I (bcc), Li II (fcc), and Li III (alpha-Hg ype), valence increases from 1 at ~ 5 GPa to ~ 2.5 at 40 GPa. The maximum valence 3 is attained in Li IV (body-centered cubic, 16 atoms per cell, packing density q = 0.965) at 47 GPa. In densely packed Na I (bcc) a linear increase of valence from 1 at ~ 10 GPa to 2.9 at 65 GPa is found which continues in Na II (fcc) up to 4.1 at 103 GPa.
The volume changes of solid iodine under pressure are discussed with respect to the packing density of the atoms and to valence. The packing density of solid iodine which is 0.805 under ambient pressure increases to 0.976 in monoatomic iodine-II, 0.993 in iodine-III, and 1 in fcc iodine-IV. Simultaneously, the valence increases from 1 in the free molecule to 1.78 in the crystal structure under ambient pressure, 2.72 – 2.81 in iodine-II, 2.86 – 2.96 in iodine-III, and 3 in fcc iodine-IV. The valence then remains constant up to about 180 GPa and rises moderately to 3.15 at the highest investigated pressure of 276 GPa. Parameters for calculating bond numbers, valences and atomic volumes of densely packed halogens, hydrogen, oxygen, and nitrogen are given.
The volume changes of cesium under pressure are discussed with respect to the packing density of the atoms and valence. The element is univalent in densely packed Cs I and Cs II. Valence increases in Cs III (packing density q = 0.973), in Cs IV (q = 0.943), in Cs V (q ~ 0.99), and in close packed Cs VI. The diminuition of volume beyond ~ 15 GPa is caused by this increase only which implies that electrons of the fifth shell act as valence electrons.