Refine
Year of publication
Document Type
- Article (66)
- Conference Proceeding (3)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (72)
Is part of the Bibliography
- no (72)
Keywords
Institute
- Physik (67)
- ELEMENTS (10)
- Biochemie, Chemie und Pharmazie (3)
- Helmholtz International Center for FAIR (1)
- Medizin (1)
- Präsidium (1)
Feasibility, design and sensitivity studies on innovative nuclear reactors that could address the issue of nuclear waste transmutation using fuels enriched in minor actinides, require high accuracy cross section data for a variety of neutron-induced reactions from thermal energies to several tens of MeV. The isotope 241Am (T1/2= 433 years) is present in high-level nuclear waste (HLW), representing about 1.8 % of the actinide mass in spent PWR UOx fuel. Its importance increases with cooling time due to additional production from the β-decay of 241Pu with a half-life of 14.3 years. The production rate of 241 Am in conventional reactors, including its further accumulation through the decay of 241Pu and its destruction through transmutation/incineration are very important parameters for the design of any recycling solution. In the present work, the 241 Am(n,f) reaction cross-section was measured using Micromegas detectors at the Experimental Area 2 of the n_TOF facility at CERN. For the measurement, the 235U(n,f) and 238U(n,f) reference reactions were used for the determination of the neutron flux. In the present work an overview of the experimental setup and the adopted data analysis techniques is given along with preliminary results.
The elements in the universe are mainly produced by charged-particle fusion reactions and neutron-capture reactions. About 35 proton-rich isotopes, the p-nuclei, cannot be produced via neutron-induced reactions. To date, nucleosynthesis simulations of possible production sites fail to reproduce the p-nuclei abundances observed in the solar system. In particular, the origin of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru is little understood. The nucleosynthesis simulations rely on assumptions about the seed abundance distributions, the nuclear reaction network and the astrophysical environment. This work addressed the nuclear data input.
The key reaction 94Mo(g,n) for the production ratio of the p-nuclei 92Mo and 94Mo was investigated via Coulomb dissociation at the LAND/R3B setup at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. A beam of 94Mo with an energy of 500 AMeV was directed onto a lead target. The neutron-dissociation reactions following the Coulomb excitation by virtual photons of the electromagnetic field of the target nucleus were investigated. All particles in the incoming and outgoing channels of the reaction were identified and their kinematics were determined in a complex analysis. The systematic uncertainties were analyzed by calculating the cross sections for all possible combinations of the data selection criteria. The integral Coulomb dissociation cross section of the reaction 94Mo(g,n) was determined to be (571 +- 14 (stat) +- 46 (syst) ) mb. The result was compared to the data obtained in a real photon experiment carried out at the Saclay linear accelerator. The ratio of the integral cross sections was found to be 0.63 +- 0.07, which is lower than the expected value of about 0.8.
The nucleosynthesis of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru was investigated in post-processing nucleosynthesis simulations within the NuGrid research platform. The impact of rate uncertainties of the most important production and destruction reactions was studied for a Supernova type II model. It could be shown that the light p-nuclei are mainly produced via neutron-dissociation reactions on heavier nuclei in the isotopic chains, and that the final abundances of these p-nuclei are determined by their main destruction reactions. The nucleosynthesis of 92Mo and 94Mo was also studied in different environments of a Supernova type Ia model. It was concluded that the maximum temperature and the duration of the high temperature phase determine the final abundances of 92Mo and 94Mo.
An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section.
Neutron capture on 241Am plays an important role in the nuclear energy production and also provides valuable information for the improvement of nuclear models and the statistical interpretation of the nuclear properties. A new experiment to measure the 241Am(n, γ) cross section in the thermal region and the first few resonances below 10 eV has been carried out at EAR2 of the n_TOF facility at CERN. Three neutron-insensitive C6D6 detectors have been used to measure the neutron-capture gamma cascade as a function of the neutron time of flight, and then deduce the neutron capture yield. Preliminary results will be presented and compared with previously obtained results at the same facility in EAR1. In EAR1 the gamma-ray background at thermal energies was about 90% of the signal while in EAR2 is up to a 25 factor much more favorable signal to noise ratio. We also extended the low energy limit down to subthermal energies. This measurement will allow a comparison with neutron capture measurements conducted at reactors and using a different experimental technique.
233U is the fissile nuclei in the Th-U fuel cycle with a particularily small neutron capture cross setion which is on average about one order of magnitude lower than its fission cross section. Hence, the measurement of the 233U(n, γ) cross section relies on a method to accurately distinguish between capture and fission γ-rays. A measurement of the 233U α-ratio has been performed at the n_TOF facility at CERN using a so-called fission tagging setup, coupling n_TOF 's Total Absorption Calorimeter with a novel fission chamber to tag the fission γ-rays. The experimental setup is described and essential parts of the analysis are discussed. Finally, a preliminary 233U α-ratio is presented.
233U is of key importance among the fissile nuclei in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section, which is on average about one order of magnitude lower than the fission cross-section. The accuracy in the measurement of the 233U capture cross-section depends crucially on an efficient capture-fission discrimination, thus a combined set-up of fission and γ-detectors is needed. A measurement of the 233U capture cross-section and capture-to-fission ratio was performed at the CERN n_TOF facility. The Total Absorption Calorimeter (TAC) of n_TOF was employed as γ-detector coupled with a novel compact ionization chamber as fission detector. A brief description of the experimental set-up will be given, and essential parts of the analysis procedure as well as the preliminary response of the set-up to capture are presented and discussed.
We present a nucleosynthesis sensitivity study for the γ-process in a Supernova type II model within the NuGrid research platform. The simulations aimed at identifying the relevant local production and destruction rates for the p-nuclei of molybdenum and at determining the sensitivity of the final abundances to these rates. We show that local destruction rates strongly determine the abundance of 92Mo and 94Mo, and quantify the impact.
The evolution of the traditional nuclear magic numbers away from the valley of stability is an active field of research. Experimental efforts focus on providing key spectroscopic information that will shed light into the structure of exotic nuclei and understanding the driving mechanism behind the shell evolution. In this work, we investigate the spin-orbit shell gap towards the neutron dripline. To do so, we employed (p,2p) quasi-free scattering reactions to measure the proton component of the state of 16,18,20C. The experimental findings support the notion of a moderate reduction of the proton spin-orbit splitting, at variance to recent claims for a prevalent magic number towards the neutron dripline.