Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Atmospheric chemistry (2)
- cancer (2)
- child (2)
- invasive fungal disease (2)
- Climate-change impacts (1)
- Thermodynamics (1)
- antifungal combination therapy (1)
- antifungal therapy (1)
- children (1)
- hematopoietic cell transplantation (1)
Institute
- Geowissenschaften (5)
- Medizin (3)
Background: Available data on the incidence and outcome of invasive fungal diseases (IFD) in children with hematological malignancies or after allogeneic hematopoietic stem cell transplantation (HSCT) are mostly based on monocenter, retrospective studies or on studies performed prior to the availability of newer triazoles or echinocandins.
Procedure: We prospectively collected clinical data on incidence, diagnostic procedures, management and outcome of IFD in children treated for hematological malignancies or undergoing HSCT in three major European pediatric cancer centers.
Results: A total of 304 children (median age 6.0 years) who underwent 360 therapies (211 chemotherapy treatments, 138 allogeneic HSCTs and/or 11 investigational chemotherapeutic treatments) were included in the analysis. Nineteen children developed proven/probable IFD, mostly due to Aspergillus (n = 10) and Candida spp. (n = 5), respectively. In patients receiving chemotherapy, 11 IFDs occurred, all during induction or re-induction therapy. None of these patients died due to IFD, whereas IFD was lethal in 3 of the 8 HSCT recipients with IFD. Significant differences among centers were observed with regard to the use of imaging diagnostics and the choice, initiation and duration of antifungal prophylaxis.
Conclusion: This prospective multicenter study provides information on the current incidence and outcome of IFD in the real life setting. Practice variation between the centers may help to ultimately improve antifungal management in children at highest risk for IFDs.
Whereas the clinical approach in pediatric cancer patients with febrile neutropenia is well established, data on non-neutropenic infectious episodes are limited. We therefore prospectively collected over a period of 4 years of data on all infectious complications in children treated for acute lymphoblastic or myeloid leukemia (ALL or AML) and non-Hodgkin lymphoma (NHL) at two major pediatric cancer centers. Infections were categorized as fever of unknown origin (FUO), and microbiologically or clinically documented infections. A total of 210 patients (median age 6 years; 142 ALL, 23 AML, 38 NHL, 7 leukemia relapse) experienced a total of 776 infectious episodes (571 during neutropenia, 205 without neutropenia). The distribution of FUO, microbiologically and clinically documented infections, did not significantly differ between neutropenic and non-neutropenic episodes. In contrast to neutropenic patients, corticosteroids did not have an impact on the infectious risk in non-neutropenic children. All but one bloodstream infection in non-neutropenic patients were due to Gram-positive pathogens. Three patients died in the context of non-neutropenic infectious episodes (mortality 1.4%). Our results well help to inform clinical practice guidelines in pediatric non-neutropenic cancer patients presenting with fever, in their attempt to safely restrict broad-spectrum antibiotics and improve the quality of life by decreasing hospitalization.
The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.
The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.
Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood1. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours2. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere3,4, and that ions have a relatively minor role5. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded6,7. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday1. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres2,3. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles4, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth5,6, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer7,8,9,10. Although recent studies11,12,13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon2, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)2,14, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10−4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10−4.5 to 10−0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
Clinical data on antifungal combination therapy are limited, in particular in the pediatric setting. We analyzed real-life data collected in two major pediatric cancer centers over a period of 4 years. Patients were identified in an observational study on children with acute leukemia and lymphoma or undergoing hematopoietic cell transplantation. Out of 438 patients, 19 patients received 21 episodes of antifungal combination therapy. Therapy was mostly started for sepsis (n = 5) or clinical deterioration with pulmonary infiltrates (n = 10), and less often for periorbital swelling with suspected mold infection (n = 2), clinical deterioration and new skin lesions, secondary antifungal prophylaxis, a persistently elevated galactomannan index, or as pre-emptive treatment (n = 1 each). Diagnostics revealed proven, probable, and possible invasive fungal disease in two, seven and four episodes, respectively. Most regimens included caspofungin (n = 19), and treatment was initiated as first line therapy in 10 episodes. The median duration was 13 days (4–46 days). Nine of the 13 patients with proven, probable, or possible invasive fungal disease survived, which was comparable to patients receiving antifungal monotherapy. Our analysis demonstrates that combination therapy has mainly been prescribed in selected immunocompromised patients with clinical deterioration due to suspected invasive fungal disease or those with sepsis, and is well tolerated. Future studies need to better characterize clinical settings in which patients may benefit from antifungal combination therapy.
The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nano-particle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e. in conditions where neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.2 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion–ion recombination before they grew to 2.2 nm. At this size, more than 90 % of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.2 nm. Observations at Hyytiälä, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations are needed to resolve the origin of the discrepancy.