Refine
Year of publication
Document Type
- Article (24)
- Doctoral Thesis (1)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- Bone density (4)
- Computed tomography (4)
- Osteoporosis (4)
- Spine (3)
- Magnetic resonance imaging (2)
- Osteoporotic fractures (2)
- angiography (2)
- Anterior cruciate ligament (1)
- Biopsy (1)
- Bone disease (1)
Institute
- Medizin (25)
Background: Computed-tomography-guided interventions are attractive for tissue sampling of paediatric tumor lesions; however, it comes with exposure to ionizing radiation. The aim of this study was to analyse the radiation dose, accuracy and speed of CT-guided interventions in paediatric patient cohort.
Methods: We retrospectively reviewed CT-guided interventions over a 10 -year period in 65 children. The intervention site consisted of bones in 38, chest (lung) in 15 and abdomen (liver, lymph nodes) in 12 cases. Radiation dose and duration of the procedures were analysed. The statistical analysis was performed using dedicated statistical software (BiAS 8.3.6 software, Epsilon Verlag, North Hasted).
Results: All interventions were performed successfully. Mean target access path to lesion within the patients was 6.0 cm (min 3.5 cm, max 11.2 cm). Time duration to complete intervention was 25:15 min (min 17:03 min, max 43:00 min). The dose-length product (DLP) of intervention scan was 29.5 mGy · cm (min 6 mGy · cm, max 85 mGy · cm) with the lowest dose for biopsies in the region of the chest (p = 0.04).
Conclusions: With justified indications, CT-guided paediatric interventions are safe, effective and can be performed both, with short intervention times and low radiation exposure.
Background: To evaluate survival data and local tumor control after transarterial chemoembolization in two groups with different embolization protocols for the treatment of HCC patients.
Methods: Ninty-nine patients (mean age: 63.6 years), 78 male (78.8%) with HCC were repeatedly treated with chemoembolization in 4-week-intervals. Eighty-eight patients had BCLC-Stage-B and in 11 patients, chemoembolization was performed for bridging (BCLC-Stage-A). In total, 667 chemoembolization treatments were performed (mean 6.7 treatments/patient). The administered chemotherapeutic agent included mitomycin. For embolization, lipiodol only (n = 51;51.5%; mean age 63.8 years; 38 male), or lipiodol plus degradable starch microspheres (DSM) (n = 48; 48.5%; mean age 63.4 years; 40 male) were used. The local tumor response was assessed by MRI using Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1). Patient survival times were evaluated using Kaplan-Meier curves and log-rank tests.
Results: The local tumor control in the lipiodol-group was: PR (partial response) in 11 (21.6%), SD (stable disease) in 32 (62.7%) and PD (progressive disease) in 8 cases (15.7%). In the lipiodol-DSM-group, PR was seen in 14 (29.2%), SD in 22 (45.8%), and PD in 12 (25.0%) individuals (p = 0.211). The median survival of patients after chemoembolization with lipiodol was 25 months and in the lipiodol-DSM-group 28 months (p = 0.845).
Conclusion: Our data suggest a slight benefit of the use of lipiodol and DSM in comparison of using lipiodol only for chemoembolization of HCC in terms of local tumor control and survival data, this trend did not reach the level of significance.
The influence of biological maturity status (BMS) on talent identification and development within elite youth soccer is critically debated. During adolescence, maturity-related performance differences within the same age group may cause greater chances of being selected for early maturing players. Therefore, coaches need to consider players' BMS. While standard methods for assessing BMS in adolescents are expensive and time-consuming imaging techniques (i.e., X-ray and MRI), there also exist more pragmatic procedures. This study aimed to evaluate commonly used methods to assess BMS within a highly selected sample of youth soccer players. A total of N = 63 elite male soccer players (U12 and U14) within the German Soccer Association's talent promotion program completed a test battery assessing BMS outcomes. Utilizing MRI diagnostics, players' skeletal age (SAMRI) was determined by radiologists and served as the reference method. Further commonly used methods included skeletal age measured by an ultrasound device (SAUS), the maturity offset (MOMIR), and the percentage of adult height (PAHKR). The relation of these alternative BMS outcomes to SAMRI was examined using different perspectives: performing bivariate correlation analyses (1), modeling BMS as a latent variable (BMSlat) based on the multiple alternative diagnostics (2), and investigating individual differences in agreement (3). (1) Correlations of SAMRI and the further BMS variables ranked from r = 0.80 to r = 0.84 for the total sample and were lower for U12 (0.56 ≤ r ≤ 0.66), and U14 (0.61 ≤ r ≤ 0.74) (2). The latent structural equation modeling (SEM) (R2 = 51%) revealed a significant influence on BMSlat for MOMIR (β = 0.51, p <0.05). The additional contribution of PAHKR (β = 0.27, p = 0.06) and SAUS (β = −0.03, p = 0.90) was rather small (3). The investigation of individual differences between the reference method and alternative diagnostics indicated a significant bias for MOMIR (p <0.01). The results support the use of economical and time-efficient methods for assessing BMS within elite youth soccer. Bivariate correlation analyses as well as the multivariate latent variable approach highlight the measures' usefulness. However, the observed individual level differences for some of the utilized procedures led to the recommendation for practitioners to use at least two alternative assessment methods in order to receive more reliable information about players' BMS within the talent promotion process.
The objective of this pilot clinical study was to assess the safety, technical feasibility, pharmacokinetic (PK) profile and tumour response of DC Bead™ with irinotecan (DEBIRI™) delivered by intra-arterial embolisation for the treatment of metastatic colorectal cancer. Eleven patients with unresectable liver metastases from CRC, tumour burden <30% of liver volume, adequate haematological, liver and renal function, performance status of <2 were included in this study. Patients received up to 4 sessions of TACE with DEBIRI at 3-week intervals. Feasibility of the procedure, safety and tumour response were assessed after each cycle. PK was measured after the first cycle. Patients were followed up to 24 weeks. Only mild to moderate adverse events were observed. DEBIRI is a technically feasibile procedure; no technical complications were observed. Average Cmax for irinotecan and SN-38 was 194 ng/ml and 16.7 ng/ml, respectively, with average t½ of 4.6 h and 12.4 h following administration of DEBIRI. Best overall response during the study showed disease control in 9 patients (2 patients with partial response and 7 with stable disease, overall response rate of 18%). Our study shows that transarterial chemoembolisation with irinotecan-loaded DC beads (DEBIRI) is safe, technically feasible and effective with a good PK profile.
Introduction: We report on successful endovascular treatment of a hydrofluoric acid burn to the hand.
Report: A worker complained of severe pain in the fingers D II to D V after injury with 60% hydrofluoric acid. A digital subtraction angiography showed vasospasm of the common palmar digital artery. We selectively applied 20% calcium gluconate intra-arterially.
After treatment all arteries were perfused. Alprostadil, acetylsalicylic acid and clopidogrel were administered in conjunction. Pain symptoms improved and sensory and motor functions were restored.
Discussion: Immediate angiography and intra-arterial application of calcium gluconate are recommended to treat hydrofluoric acid burn to a limb.
Objectives: To evaluate the predictive value of volumetric bone mineral density (BMD) assessment of the lumbar spine derived from phantomless dual-energy CT (DECT)-based volumetric material decomposition as an indicator for the 2-year occurrence risk of osteoporosis-associated fractures. Methods: L1 of 92 patients (46 men, 46 women; mean age, 64 years, range, 19–103 years) who had undergone third-generation dual-source DECT between 01/2016 and 12/2018 was retrospectively analyzed. For phantomless BMD assessment, dedicated DECT postprocessing software using material decomposition was applied. Digital files of all patients were sighted for 2 years following DECT to obtain the incidence of osteoporotic fractures. Receiver operating characteristic (ROC) analysis was used to calculate cut-off values and logistic regression models were used to determine associations of BMD, sex, and age with the occurrence of osteoporotic fractures. Results: A DECT-derived BMD cut-off of 93.70 mg/cm3 yielded 85.45% sensitivity and 89.19% specificity for the prediction to sustain one or more osteoporosis-associated fractures within 2 years after BMD measurement. DECT-derived BMD was significantly associated with the occurrence of new fractures (odds ratio of 0.8710, 95% CI, 0.091–0.9375, p < .001), indicating a protective effect of increased DECT-derived BMD values. Overall AUC was 0.9373 (CI, 0.867–0.977, p < .001) for the differentiation of patients who sustained osteoporosis-associated fractures within 2 years of BMD assessment. Conclusions: Retrospective DECT-based volumetric BMD assessment can accurately predict the 2-year risk to sustain an osteoporosis-associated fracture in at-risk patients without requiring a calibration phantom. Lower DECT-based BMD values are strongly associated with an increased risk to sustain fragility fractures.
Key Points: Dual-energy CT–derived assessment of bone mineral density can identify patients at risk to sustain osteoporosis-associated fractures with a sensitivity of 85.45% and a specificity of 89.19%. The DECT-derived BMD threshold for identification of at-risk patients lies above the American College of Radiology (ACR) QCT guidelines for the identification of osteoporosis (93.70 mg/cm 3 vs 80 mg/cm 3 ).
Objectives: To investigate the diagnostic accuracy of color-coded contrast-enhanced dual-energy CT virtual noncalcium (VNCa) reconstructions for the assessment of lumbar disk herniation compared to unenhanced VNCa imaging.
Methods: A total of 91 patients were retrospectively evaluated (65 years ± 16; 43 women) who had undergone third-generation dual-source dual-energy CT and 3.0-T MRI within an examination interval up to 3 weeks between November 2019 and December 2020. Eight weeks after assessing unenhanced color-coded VNCa reconstructions for the presence and degree of lumbar disk herniation, corresponding contrast-enhanced portal venous phase color-coded VNCa reconstructions were independently analyzed by the same five radiologists. MRI series were additionally analyzed by one highly experienced musculoskeletal radiologist and served as reference standard.
Results: MRI depicted 210 herniated lumbar disks in 91 patients. VNCa reconstructions derived from contrast-enhanced CT scans showed similar high overall sensitivity (93% vs 95%), specificity (94% vs 95%), and accuracy (94% vs 95%) for the assessment of lumbar disk herniation compared to unenhanced VNCa images (all p > .05). Interrater agreement in VNCa imaging was excellent for both, unenhanced and contrast-enhanced CT (κ = 0.84 vs κ = 0.86; p > .05). Moreover, ratings for diagnostic confidence, image quality, and noise differed not significantly between unenhanced and contrast-enhanced VNCa series (all p > .05).
Conclusions: Color-coded VNCa reconstructions derived from contrast-enhanced dual-energy CT yield similar diagnostic accuracy for the depiction of lumbar disk herniation compared to unenhanced VNCa imaging and therefore may improve opportunistic retrospective lumbar disk herniation assessment, particularly in case of staging CT examinations.
Key Points
• Color-coded dual-source dual-energy CT virtual noncalcium (VNCa) reconstructions derived from portal venous phase yield similar high diagnostic accuracy for the assessment of lumbar disk herniation compared to unenhanced VNCa CT series (94% vs 95%) with MRI serving as a standard of reference.
• Diagnostic confidence, image quality, and noise levels differ not significantly between unenhanced and contrast-enhanced portal venous phase VNCa dual-energy CT series.
• Dual-source dual-energy CT might have the potential to improve opportunistic retrospective lumbar disk herniation assessment in CT examinations performed for other indications through reconstruction of VNCa images.
Introduction: In patients with severe pelvic ring injuries, exsanguination still is the leading cause of death in the early post-injury phase. While mechanical pelvic ring stabilization and pre-peritoneal pelvic packing are mainly addressing venous bleeding, angio-embolization aims to control arterial bleeding. The goal of the present study was to evaluate the rate of postoperative angio-embolization after mechanical pelvic ring injury stabilization and pre-peritoneal pelvic packing. Bleeding sources detected in the angiography and the patient's outcome were investigated. Patients and Methods: Retrospective observational cohort study at a single academic level I trauma center, reviewing all patients with pelvic ring injuries admitted from 01/2010 to 12/2019. Patients with emergent mechanical pelvic ring stabilization (supraacetabular external fixator and/or pelvic C-clamp) and direct pre-peritoneal pelvic packing were further analyzed. Patients that underwent postoperative angio-embolization were compared with those that did not. All postoperative angio-embolizations were evaluated with regards to bleeding sources and type of embolization. Results: During the study period, a total of 39 patients required immediate mechanical pelvic stabilization and direct pre-peritoneal pelvic packing. Of these, 12 patients (30.8%) underwent a postoperative angio-embolization. The following vessels were identified as bleeding sources: superior gluteal artery (n = 6), obturator artery (n = 2), internal pudendal artery (n = 2), unnamed branches of the internal iliac artery (n = 3). A selective embolization was successful in 11 patients; in 1 patient, an unilateral complete occlusion of the internal iliac artery was performed to control the bleeding. Mean time from hospital admission to the surgical procedure was 52.8 ± 14.7 min and the mean time from admission to angio-embolization was 189.1 ± 55.5 min. The in-hospital mortality rate of patients with angio-embolization was 25.0% (n = 3). Of these, 2 patients died due to multiple organ failure and 1 patient due to severe head injury. Conclusion: Secondary angio-embolization after external pelvic fixation and pre-peritoneal pelvic packing was effective in controlling ongoing bleeding. The most frequently detected bleeding vessel was the superior gluteal artery, which is difficult to surgically address, further highlighting the importance of angio-embolization in the management algorithm.
Objective: To investigate the accuracy, efficiency and radiation dose of a novel laser navigation system (LNS) compared to those of free-handed punctures on computed tomography (CT).
Materials and methods: Sixty punctures were performed using a phantom body to compare accuracy, timely effort, and radiation dose of the conventional free-handed procedure to those of the LNS-guided method. An additional 20 LNS-guided interventions were performed on another phantom to confirm accuracy. Ten patients subsequently underwent LNS-guided punctures.
Results: The phantom 1-LNS group showed a target point accuracy of 4.0 ± 2.7 mm (freehand, 6.3 ± 3.6 mm; p = 0.008), entrance point accuracy of 0.8 ± 0.6 mm (freehand, 6.1 ± 4.7 mm), needle angulation accuracy of 1.3 ± 0.9° (freehand, 3.4 ± 3.1°; p < 0.001), intervention time of 7.03 ± 5.18 minutes (freehand, 8.38 ± 4.09 minutes; p = 0.006), and 4.2 ± 3.6 CT images (freehand, 7.9 ± 5.1; p < 0.001). These results show significant improvement in 60 punctures compared to freehand. The phantom 2-LNS group showed a target point accuracy of 3.6 ± 2.5 mm, entrance point accuracy of 1.4 ± 2.0 mm, needle angulation accuracy of 1.0 ± 1.2°, intervention time of 1.44 ± 0.22 minutes, and 3.4 ± 1.7 CT images. The LNS group achieved target point accuracy of 5.0 ± 1.2 mm, entrance point accuracy of 2.0 ± 1.5 mm, needle angulation accuracy of 1.5 ± 0.3°, intervention time of 12.08 ± 3.07 minutes, and used 5.7 ± 1.6 CT-images for the first experience with patients.
Conclusion: Laser navigation system improved accuracy, duration of intervention, and radiation dose of CT-guided interventions.
To analyze prospectively the interventional and clinical aspects of computed tomography-guided direct intratumoural injection of a novel chemotherapeutic administration and the parenchymal changes of tumour and necrosis in malignant liver tumours. Eight patients with 17 colorectal liver metastases were treated with a mean of 5.1 injections and nine patients with 13 hepatocellular carcinoma nodules with a mean of 3.1 treatments with computed tomography guided local applications of a novel cisplatin/epinephrine gel. This application provides a higher local and lower systemic drug concentration. Volumes of tumour and necrosis prior and after treatment were measured by computer generated volumetric analysis. Contrast enhanced studies verified pretherapeutic viable tumour volumes with a value of 77.4 ml in the metastases and 29.2 ml in the hepatocellular carcinoma nodules. Intratumoural drug application resulted in a significant increase of necrosis and a decrease in viable tumour volume to be 68.3 ml in metastases and 14.5 ml in hepatocellular carcinoma. Local therapy control rate for the follow up to 6 months was 38 and 71% for the group of metastases and hepatocellular carcinoma, respectively. Direct intratumoural injection of cisplatin/epinepthrine injectable gel is a feasible and good tolerated method and results in the development of a statistically significant increase in necrosis in malignant liver tumours. For hepatocellular carcinoma a higher local therapy control rate compared to colorectal metastases can be reported.