Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- European Robins (1)
- Lichtabhängigkeit (1)
- Magnetkompass (1)
- Orientation (1)
- Orientierung (1)
- Radical-Pair-Mechanism (1)
- Radikalpaar-Mechanismus (1)
- Rotkehlchen (1)
- conformational change (1)
- cryptochrome 1a (1)
Institute
Background The Radical Pair model proposes that magnetoreception is a light-dependent process. Under low monochromatic light from the short-wavelength part of the visual spectrum, migratory birds show orientation in their migratory direction. Under monochromatic light of higher intensity, however, they showed unusual preferences in other directions or axial preferences. To determine whether or not these responses are still controlled by the respective light regimes, European robins, Erithacus rubecula, were tested under UV, Blue, Turquoise and Green light at increasing intensities, with orientation in migratory direction serving as a criterion whether or not magnetoreception works in the normal way. Results Under low light with a quantal flux of 8 times 10 to 15 power quanta s-1 m-2, the birds were well oriented in their seasonally appropriate migratory direction under 424 nm Blue, 502 nm Turquoise and 565 nm Green light, indicating unimpaired magnetoreception. Under 373 nm UV of the same quantal flux, they were not oriented in migratory direction, showing a preference of the east-west axis instead, but they showed excellent orientation in migratory direction under UV of lower intensity. Intensities of above 36 times 10 to 15 power quanta s-1 m-2 of Blue, Turquoise and Green light elicited a variety of responses: disorientation, headings along the east-west axis, headings along the north-south axis or 'fixed' direction tendencies. These responses changed as the intensity was increased from 36 times 10 to the 15 power quanta s-1 m-2 to 54 and 72 times 10 to 15 power quanta s-1 m-2. Conclusion The specific manifestation of responses in directions other than migratory direction clearly depends on the ambient light regime. This implies that although mechanisms normally providing magnetic compass information seem disrupted, processes that are activated by light still control the behavior. It suggests complex interactions between different types of receptors, magnetic and visual. The nature of the receptors involved and details of their connections are not yet known; however, a role of the color cones in the processes mediating magnetic input is suggested.
The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions.
Bisher konnte allein für den Magnetkompass der Vögel ein Mechanismus der Magnetperzeption identifiziert werden. In Verhaltensversuchen, die Zugorientierung als Kriterium einsetzten, ob Magnetrezeption ungestört abläuft oder nicht, konnte dieser Mechanismus analysiert werden. Die Experimente zeigten, dass der Magnetrezeptionsmechanismus lichtabhängig ist. Vögel die im blau bis grünen Teil des Spektrums in Orientierungstrichtern getestet wurden bevorzugten signifikant ihre der Jahreszeit entsprechende Zugrichtung. Führte man diese Tests mit längerwelligerem Licht durch, zeigten die Tiere Desorientierung. Durch die gezielte Manipulation des umgebenden Erdmagnetfeldes durch künstliche Felder, ergab sich ein Wirkprinzip des Magnetkompasses der Vögel, welches nichts mit dem der uns bekannten technischen Kompasse gemein hat. Die Tiere richten sich nicht nach der Polarität des Feldes, sondern detektieren vielmehr den Neigungsgrad und den Verlauf der magnetischen Feldlinien. Durch den Einsatz von Hochfrequenzfeldern als diagnostisches Werkzeug, konnte gezeigt werden, dass der Inklinationskompass der Vögel auf einem Radikalprozess basiert. Darüber hinaus konnte gezeigt werden, dass der Sitz des lichtabhängigen Magnetkompasses im rechten Auge lokalisiert ist. Unter bestimmten künstlichen Lichtbedingungen wurden von Rotkehlchen allerdings Verhaltensantworten gezeigt, die von der normalen Zugorientierung abwichen. In der vorliegenden Arbeit werden gerade jene Phänomene genauer analysiert, die in der Vergangenheit zu Nicht-Kompass-Antworten geführt haben. Die Intensitätserhöhung kurzwelliger Lichter hatte zu vermehrt axialem Verhalten geführt, eine Kombination aus langwelligem, gelben Licht mit einer kurzwelligen Komponente hatte zu Fixrichtungen geführt, d.h. die Vögel zeigten nicht mehr die saisontypische Zugumkehr. Auf biogenem Eisen (Magnetit) basierende Rezeptoren der Magnetfeld-wahrnehmung werden als zweites System der Perzeptionsmöglichkeit diskutiert, wobei ihnen im Zusammenhang mit dem ‚Kartensinn’ eher eine Intensitätssensibilität zugeschrieben wird. In der vorliegenden Arbeit wurden Versuche durchgeführt, die das komplexe Zusammenspiel unterschiedlicher Perzeptionsmechanismen des Erdmagnetfeldes untersuchen. Mischlichtbedingungen wurden daraufhin untersucht, ob sie einem radikalpaar-basierenden Inklinationskompass unterliegen, oder nicht. Für türkis-gelbes Mischlicht wird gezeigt, dass die eingeschlagene Fixrichtung nicht mit Hilfe eines Inklinationskompasses aufgesucht wird. Darüber hinaus beruht die Richtungswahl des getesteten Vogels nicht auf einem Radikalpaarmechanismus, ist aber abhängig vom vorliegenden Magnetfeld. Da Magnetit bei Vögeln in der Oberschnabelregion lokalisiert werden konnte, wurden Betäubungsversuche mit einem Lokalanästhetikum durchgeführt. Die Fixrichtung bricht zusammen und die Vögel zeigen desorientiertes Verhalten. Im Gegensatz dazu bleiben Vögel unter Grün und Weisslicht, Bedingungen wo ein Inklinationskompass zum Einsatz kommt, mit Oberschnabelbetäubung unbeeindruckt und suchen die jahreszeitlich passende Richtung auf. Für kurzwellige Lichter wird eine Intensitätsabhängigkeitsstudie durchgeführt, die analysiert ab wann Zugorientierung in Nicht-Kompass-Antworten umschlägt. Die Wellenlängenabhängigkeit der Intensitätssensitivität, die beobachtet wird, lässt auf die Beteiligung des optischen Systems schliessen. Deshalb wurden Versuche durchgeführt, die über die Lateralisation des Magnetkompasses hinaus die Rechtsdominanz des Rotkehlchenauges genauer untersucht haben. Mittels einer Brille, die die gleiche Lichtintensität auf beide Augen fallen ließ, aber in klare und unscharfe Wahrnehmung der Umgebung unterschied, konnte herausgefunden werden, dass über die reine Aktivierung von Licht hinaus Formensehen eine entscheidene Rolle zu spielen scheint. Versuche in absoluter Dunkelheit zeigen, dass von Rotkehlchen trotz der Abwesenheit von Licht signifikant eine Vorzugsrichtung aufgesucht wird, die keiner saisonalen Zugumkehr unterläuft. Die Fixrichtung beruht nicht auf einem Inklinationskompass und sie bricht nach Oberschnabelbetäubung zusammen. Alle bisher analysierten Nicht-Kompass-Antworten scheinen auf einem zweiten, magnetit-basierenden Mechanismus zu beruhen. Diese Rezeptoren scheinen neben Intensitätsinformationen des Erdmagnetfeldes auch Richtungsinformationen zu generieren. Die biologische Relevanz der ihnen unterliegenden Fixrichtungen bleibt allerdings ungeklärt.