Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Ceramide Synthase (1)
- Colitis assoziate colorectal cancer (1)
- DHA (1)
- EPA (1)
- Inflammatory Bowel Disease (1)
- Jurkat (1)
- LASS (1)
- LC–MS/MS (1)
- S1P (1)
- SGPL1 (1)
Institute
Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5–2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.
The lipid status in patients with ulcerative colitis : Sphingolipids are disease-dependent regulated
(2019)
The factors that contribute to the development of ulcerative colitis (UC), are still not fully identified. Disruption of the colon barrier is one of the first events leading to invasion of bacteria and activation of the immune system. The colon barrier is strongly influenced by sphingolipids. Sphingolipids impact cell–cell contacts and function as second messengers. We collected blood and colon tissue samples from UC patients and healthy controls and investigated the sphingolipids and other lipids by LC-MS/MS or LC-QTOFMS. The expression of enzymes of the sphingolipid pathway were determined by RT-PCR and immunohistochemistry. In inflamed colon tissue, the de novo-synthesis of sphingolipids is reduced, whereas lactosylceramides are increased. Reduction of dihydroceramides was due to posttranslational inhibition rather than altered serine palmitoyl transferase or ceramide synthase expression in inflamed colon tissue. Furthermore, in human plasma from UC-patients, several sphinglipids change significantly in comparison to healthy controls. Beside sphingolipids free fatty acids, lysophosphatidylcholines and triglycerides changed significantly in the blood of colitis patients dependent on the disease severity. Our data indicate that detraction of the sphingolipid de novo synthesis in colon tissue might be an important trigger for UC. Several lipids changed significantly in the blood, which might be used as biomarkers for disease control; however, diet-related variabilities need to be considered.
To better understand the role of sphingolipids in the multifactorial process of inflammatory bowel disease (IBD), we elucidated the role of CerS4 in colitis and colitis-associated cancer (CAC). For this, we utilized the azoxymethane/dextran sodium sulphate (AOM/DSS)-induced colitis model in global CerS4 knockout (CerS4 KO), intestinal epithelial (CerS4 Vil/Cre), or T-cell restricted knockout (CerS4 LCK/Cre) mice. CerS4 KO mice were highly sensitive to the toxic effect of AOM/DSS, leading to a high mortality rate. CerS4 Vil/Cre mice had smaller tumors than WT mice. In contrast, CerS4 LCK/Cre mice frequently suffered from pancolitis and developed more colon tumors. In vitro, CerS4-depleted CD8+ T-cells isolated from the thymi of CerS4 LCK/Cre mice showed impaired proliferation and prolonged cytokine production after stimulation in comparison with T-cells from WT mice. Depletion of CerS4 in human Jurkat T-cells led to a constitutively activated T-cell receptor and NF-κB signaling pathway. In conclusion, the deficiency of CerS4 in T-cells led to an enduring active status of these cells and prevents the resolution of inflammation, leading to a higher tumor burden in the CAC mouse model. In contrast, CerS4 deficiency in epithelial cells resulted in smaller colon tumors and seemed to be beneficial. The higher tumor incidence in CerS4 LCK/Cre mice and the toxic effect of AOM/DSS in CerS4 KO mice exhibited the importance of CerS4 in other tissues and revealed the complexity of general targeting CerS4.
Ceramide synthase (CerS) is the enzyme responsible for the de novo synthesis of ceramide. In this process, the different CerS isoforms are substrate-specific and produce ceramides of different chain lengths. Ceramides form the backbone for other sphingolipids and are enriched in membrane microdomains called lipid rafts. Lipid rafts are important signaling platforms for many transmembrane proteins, but can also act as bioactive lipids. Depending on the chain length, the effects on signaling pathways can vary. The aim of this work was to further investigate the chain length-specific effects by CerS4 on the progression of inflammatory colon cancer. To understand the tissue-specific effects of CerS4 deficiency on the progression of acute colitis and colitis-associated cancer (CAC), CerS4 knockout models were used. Disease progression of wild-type CerS4 (WT) was compared with that of mice with global CerS4 knockout (CerS4 KO) and mice in which CerS4 deficiency was restricted to T cells (CerS4 LCK/Cre) or intestinal cells (CerS4 Vil/Cre). Acute colitis was induced with sodium dextran sulfate (DSS), whereas azoxymethane (AOM)/DSS combinations were used to induce CAC in mice. The results showed a different disease progression depending on the specific knockout. While CerS4 KO mice were sensitive to DSS. AOM/DSS treatment was lethal for these mice, indicating an important role of CerS4 in other tissues. CerS4 Vil/Cre mice were protected from tumor formation. In contrast, CerS4 LCK/Cre mice experienced increased tumor formation and pan-inflammation. The mechanism behind this is due to the absence of cytotoxic T cells and the increase of regulatory T cells in the CerS4 LCK/Cre mice, demonstrating that CerS4 is critical for T cell function and development. To understand the role of CerS in humans, organoids were prepared from patients and the CerS profile in the different organoids was elucidated. This work provides, for the first time, insights into the CerS profile in human organoids and demonstrates a link between differentiation markers and stem cell markers with CerS. In addition, the role of CerS4 was investigated in vitro using three different colon cell lines-Caco-2 cells, HCT116 cells, and HCT15 cells. Hypoxia induced downregulation of CerS4 in all cell lines. Using the luciferase promoter assay, hypoxia-induced downregulation could already be detected at the promoter. Downregulation of CerS4 and CerS5 in Caco-2 cells and HCT116 cells resulted in different metabolic changes and mitochondrial dynamics after hypoxia. In conclusion, the results show that the role of CerS4 depends on the tissue cell type and stage of colorectal carcinoma, which complicates the consideration of CerS4 as a target in patients.