Refine
Document Type
- Article (7)
- Doctoral Thesis (1)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
Institute
- Physik (8)
- Sportwissenschaften (2)
Chirality is omnipresent in living nature. On the single molecule level, the response of a chiral species to a chiral probe depends on their respective handedness. A prominent example is the difference in the interaction of a chiral molecule with left or right circularly polarized light. In the present study, we show by Coulomb explosion imaging that circularly polarized light can also induce a chiral fragmentation of a planar and thus achiral molecule. The observed enantiomer strongly depends on the orientation of the molecule with respect to the light propagation direction and the helicity of the ionizing light. This finding might trigger new approaches to improve laser-driven enantioselective chemical synthesis.
Chiralität ist in der belebten Natur ein omnipräsentes Phänomen und beschreibt die Symmetrieeigenschaft eines Objektes, dass dieses von seinem Spiegelbild unterscheidbar ist. Die bisherigen Untersuchungen der Wechselwirkung zwischen chiralen Molekülen und Licht fokussieren sich auf das Regime der Ein- und Multiphoton-Ionisation und wird mit dieser Arbeit um Untersuchungen im Starkfeldregime erweitert. Im Rahmen dieser Arbeit wurden Experimente an einzelnen chiralen Molekülen in starken Laserfeldern vorbereitet, durchgeführt, analysiert und alle geladenen Fragmente in Koinzidenz untersucht.
Die Präsentation der Ergebnisse orientierte sich an der Reihenfolge, in der auch die Datenauswertung von Vielteilchenaufbrüchen vonstattengeht: Zunächst wurde der Dichroismus in den Photoionen (PICD) auf chirale Signale in integraler differentieller Form untersucht, dann wurde die Asymmetrien in den Elektronenverteilungen vorgestellt und abschließend die Zusammenhänge zwischen den Ionen- und Elektronenverteilungen aufgezeigt.
Kapitel 6 untersuchte die (differentielle) Ionisations- und Fragmentationswahrscheinlichkeit von verschiedenen chiralen Molekülen. Die in Kapitel 6.1 präsentierten Daten verknüpften erstmals den bereits in der Literatur diskutierten Zirkulardichroismus in den Zählraten von Photoionen (PICD) mit dem signalstärkeren differentiellen PICD in der Einfachionisation von Methyloxiran. Dissoziiert das Molekül nach der Ionisation rasch genug, gewährt der Impulsvektor des geladenen Fragments Zugang zu einer Fragmentationsachse. Durch die Auflösung nach einer Molekülachse ist der beobachtete PICD fast eine Größenordnung stärker, als der über alle Raumrichtungen integrierte.
In steigender Komplexität wurde in Kapitel 6.2 eine Fragmentation in vier Teilchen von Molekülen aus einem racemischen Gemisch von CHBrClF untersucht. Über die Auswertung eines Spatproduktes aus den Impulsvektoren konnte für jedes Molekül dessen Händigkeit bestimmt und der vollständig differentielle PICD untersucht werden. Durch das Festhalten einer Fragmentationsachse (analog zu Kapitel 6.1) konnten um einen Faktor vier stärkere PICD-Signale und durch das Auflösen nach der vollständigen Molekülorientierung die Signalstärke des PICD um einen Faktor von etwa 16 in den Bereich einiger Prozente gebracht werden. Leider übersteigt die theoretische Beschreibung dieses Prozesses den aktuellen Stand der Forschung weit. Daher kann nicht ausgeschlossen werden, dass nicht ein Beitrag zur PICD-Signalverstärkung auch aus der Dynamik der sequentiellen vielfachen Ionisation stammt.
Die untersuchte Reaktion in Kapitel 6.3 war der Fünf-Teilchenaufbruch der achiralen Ameisensäure. In der Messung aller ionischen Fragmente konnten analog zu dem vorherigen Kapitel die internen Koordinaten sowie die Orientierung des Moleküls ermittelt werden. Tatsächlich wurde von einer chiralen Fragmentation der achiralen Ameisensäure berichtet. Welches Enantiomer in der Fragmentation beobachtet wird, hängt maßgeblich von der Molekülorientierung relativ zum ionisierenden Laserpuls ab. Diese Erkenntnis könnte zu neuen Ansätzen für Laserkatalysierte enantioselektive Reaktionen führen. Darüber hinaus konnte gezeigt werden, dass die beobachtete Händigkeit des Moleküls nicht nur von seiner Orientierung, sondern auch von der Helizität des ionisierenden Laserpulses abhängt. Dieser differentielle PICD an der Ameisensäure zeigte sich neben einer sehr großen Signalstärke von über 20 % auch als sensitive Probe für die molekulare Struktur.
In Kapitel 7 wurden die Untersuchungen an den 3-dimensionalen Impulsverteilungen der Photoelektronen vorgestellt. Zunächst wird hierzu auf die allgemeine Form des Dichroismus in den Photoelektronen (PECD) im Starkfeldregime eingegangen und die vorherrschenden Symmetrien des Ionisationsregimes herausgearbeitet (Kapitel 7.1). Mit leicht steigender Komplexität konnte eine klare Verbindung zwischen der Asymmetrie in der Elektronenverteilung und dem Schicksal des zurückbleibenden molekularen Ions anhand der Einfachionisation von Methyloxiran herausgearbeitet werden (Kapitel 7.2). Dies hat eine wichtige Auswirkung auf die Nutzbarkeit des PECD im Starkfeldregime als Analysemethode für Chemie und Pharmazie: Der über alle Fragmentationskanäle integrierte PECD ist sensitiv auf die Gewichtung der Fragmente und damit auch auf beispielsweise die maximale Laserintensität. Die Daten legen nahe, dass die Abhängigkeit des PECD von dem Fragmentationskanal auf die unterschiedliche Auswahl von Subensembles molekularer Orientierungen zurückzuführen ist.
Bei Verwendung von elliptisch polarisiertem Licht treten gegenüber der zirkularen Polarisation eine Reihe neuer Effekte auf (Kapitel 7.3). Zunächst zeigt der PECD auch im Starkfeldregime eine nicht lineare Sensitivität auf den Polarisationszustand, welche sich auch als Funktion des Elektronentransversalimpulses und dem Fragmentationskanal ändert. Somit ist die Verwendung von elliptisch polarisiertem Licht bestens für die chirale Erkennung geeignet, wie inzwischen auch in der Literatur bestätigt wurde. Darüber hinaus führt die gebrochene Rotationssymmetrie bei elliptisch polarisiertem Licht zu einer Elektronenimpulsverteilung, welche selbst chiral ist: Der PECD variiert je nach Winkel φ in der Polarisationsebene, wobei die Extrema des PECD nicht mit den Maxima der Zählraten übereinstimmen. Als neue chirale Beobachtungsgröße konnten wir eine enantiosensitive und vorwärts-/rückwärtsasymmetrische Rotation der Zählratenmaxima einführen. Als abgeleitete Größe aus derselben drei-dimensionalen Elektronenverteilung ist diese Beobachtungsgröße jedoch untrennbar verknüpft mit dem ϕ-abhängigen PECD.
Kapitel 8 verknüpfte das (partielle) Wissen um die molekulare Orientierung und den PICD mit den Asymmetrien der Elektronenverteilung für die Messung der fünffach-Ionisation von Ameisensäure (Kapitel 8.1), der vierfach-Ionisation von CHBrClF (Kapitel 8.2) und der Einfachionisation von Methyloxiran (Kapitel 8.3). Im Datensatz der Ameisensäure und dem des CHBrClF zeigte die molekulare Orientierung einen größeren Einfluss auf die Asymmetrie in der Elektronenverteilung als das Enantiomer oder die Helizität des Lichtes. Diese Verknüpfung zwischen Molekülorientierung und Elektronenasymmetrie überträgt die Asymmetrien des PICD auf die Elektronenverteilung. Die Messung an Methyloxiran relativiert diesen Zusammenhang jedoch in dem dieser in dieser Stärke nur bei manchen Fragmentationskanälen auftritt. Offenbar ist die Übertragung der Asymmetrie der differentiellen Ionisationswahrscheinlichkeit nur einer der Mechanismen, welcher zu Elektronasymmetrien im Starkfeldregime führt.
How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion’s potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons’ emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.
Influence of the emission site on the photoelectron circular dichroism in trifluoromethyloxirane
(2022)
We report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted. Employing coincident detection of electrons and fragment ions, we concentrate on identical molecular fragmentation channels for all of the electron-emitter scenarios. Thereby, we systematically examine the influence of the emission site of the photoelectron wave on the differential PECD. We observe large differences in the PECD signals. The present experimental results are supported by corresponding relaxed-core Hartree–Fock calculations.
When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons’ birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.
A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction—where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within—can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.
We experimentally investigated the quasifree mechanism (QFM) in one-photon double ionization of He and H2 at 800 eV photon energy and circular polarization with a COLTRIMS reaction microscope. Our work provides new insight into this elusive photoionization mechanism that was predicted by Miron Amusia more than four decades ago. We found the distinct four-fold symmetry in the angular emission pattern of QFM electrons from H2 double ionization that has previously only been observed for He. Furthermore, we provide experimental evidence that the photon momentum is not imparted onto the center of mass in quasifree photoionization, which is in contrast to the situation in single ionization and in double ionization mediated by the shake-off and knock-out mechanisms. This finding is substantiated by numerical results obtained by solving the system’s full-dimensional time-dependent Schrödinger equation beyond the dipole approximation.
The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules, the photoelectron energy does not depend on the electron’s emission direction, but theoretical studies have questioned this since 1990. Here, we provide experimental evidence that the energies of photoelectrons emitted against the light propagation direction are shifted toward higher values, while those electrons that are emitted along the light propagation direction are shifted to lower values. We attribute the energy shift to a nondipole contribution to the ponderomotive potential that is due to the interaction of the moving electrons with the incident photons.