Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Physik (2)
A method is presented to define unique continuum states for the two-center Dirac Hamiltonian. In the spherical limit these states become the familiar angular-momentum eigenstates of the radial Coulomb potential. The different states for a fixed total energy ‖E‖>m may be distinguished by considering the asymptotic spin-angular distribution of states with unique scattering phases. The first numerical solutions of the two-center Dirac equation for continuum states are presented.
Ionization, pair creation, and electron excitations in relativistic heavy-ion collisions are investigated in the framework of the coupled-channel formalism. Collisions between heavy projectiles and Pb82+ are considered for various bombarding energies in the region E=500 up to 2000 MeV/u. Useful symmetry relations for the matrix elements are derived and the influence of gauge transformations onto the coupled-channel equations is explored.