Refine
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Lipid transport protein (1)
- Mycoplasma (1)
- additive manufacturing (1)
- cryoelectron microscopy (1)
- lipids (1)
- liver cancer (1)
- molecular dynamics simulations (1)
- open-source 3D bioprinting (1)
- organoids (1)
- stereolithography (1)
Institute
Vertebrate life depends on renal function to filter excess fluid and remove low-molecular-weight waste products. An essential component of the kidney filtration barrier is the slit diaphragm (SD), a specialized cell-cell junction between podocytes. Although the constituents of the SD are largely known, its molecular organization remains elusive. Here, we use super-resolution correlative light and electron microscopy to quantify a linear rate of reduction in albumin concentration across the filtration barrier. Next, we use cryo-electron tomography of vitreous lamellae from high-pressure frozen native glomeruli to analyze the molecular architecture of the SD. The resulting densities resemble a fishnet pattern. Fitting of Nephrin and Neph1, the main constituents of the SD, results in a complex interaction pattern with multiple contact sites between the molecules. Using molecular dynamics flexible fitting, we construct a blueprint of the SD, where we describe all interactions. Our architectural understanding of the SD reconciles previous findings and provides a mechanistic framework for the development of novel therapies to treat kidney dysfunction.
Vertebrate life depends on renal function to filter excess fluid and remove low-molecular-weight waste products. An essential component of the kidney filtration barrier is the slit diaphragm (SD), a specialized cell-cell junction between podocytes. Although the constituents of the SD are largely known, its molecular organization remains elusive. Here, we use super-resolution correlative light and electron microscopy to quantify a linear rate of reduction in albumin concentration across the filtration barrier under no-flow conditions. Next, we use cryo-electron tomography of vitreous lamellae from high-pressure frozen native glomeruli to analyze the molecular architecture of the SD. The resulting densities resemble a fishnet pattern. Fitting of Nephrin and Neph1, the main constituents of the SD, results in a complex interaction pattern with multiple contact sites between the molecules. Using molecular dynamics simulations, we construct a blueprint of the SD that explains its molecular architecture. Our architectural understanding of the SD reconciles previous findings and provides a mechanistic framework for the development of novel therapies to treat kidney dysfunction.
A widespread application of 3D bioprinting in basic and translational research requires accessibility to affordable printers able to produce physiologically relevant tissue models. To facilitate the use of bioprinting as a standard technique in biology, an open-source device based on a consumer-grade 3D stereolithography apparatus (SLA) printer is developed. This SLA bioprinter can produce complex constructs that preserve cell viability and recapitulate the physiology of tissues. The detailed documentation of the modifications apported to the printer as well as a throughout performance analysis allow for a straightforward adoption of the device in other labs and its customization for specific applications. Given the low cost, several modified bioprinters could be simultaneously operated for a parallelized tissue production. To showcase the capability of the bioprinter, constructs consisting of patient-derived cholangiocarcinoma organoids encapsulated in a gelatin methacrylate (GelMA)/polyethylene glycol diacrylate (PEGDA) hydrogel are produced. A thorough characterization of different GelMA/PEGDA ratios reveals that the mechanical properties of the bioprinted tumor model can be accurately fine-tuned to mimic a specific tumor micro-environment. Immunofluorescence and gene expression analyses of tumor markers confirm that the bioprinted synthetic hydrogel provides a flexible and adequate replacement of animal-derived reconstituted extracellular matrix.
Lipid acquisition and transport are fundamental processes in all organisms, but many of the key players remain unidentified. In this study, we investigate the lipid-cycling mechanism of the minimal model organism Mycoplasma pneumoniae. We show that the essential protein P116 can extract lipids from the environment but also self- sufficiently deposit them into both eukaryotic cell membranes and liposomes. Our structures and molecular dynamics simulation reveal the mechanism by which the N- terminal region of P116, which resembles an SMP domain, perturbs the membrane, while a hydrophobic pocket exploits the chemical gradient to collect the lipids. Filling of P116 with cargo leads to a conformational change that modulates membrane affinity without consumption of ATP. We show that the Mycoplasmas have one integrated lipid acquisition and delivery machinery that shortcuts the complex multi-protein pathways used by higher developed organisms.
Lipid acquisition and transport are fundamental processes in all organisms, but many of the key players remain unidentified. Here, we elucidate the lipid-cycling mechanism of the Mycoplasma pneumoniae membrane protein P116. We show that P116 not only extracts lipids from its environment but also self-sufficiently deposits them into both bacterial and eukaryotic cell membranes as well as liposomes. Our structures and molecular dynamics simulation show that the N-terminal region of P116, which resembles an SMP domain, is responsible for perturbing the membrane, while a hydrophobic pocket exploits the chemical gradient to collect the lipids and the protein’s dorsal side acts as a mediator of membrane directionality. Furthermore, ligand binding and growth curve assays suggest the potential for designing small molecule inhibitors targeting this essential and immunodominant protein. We show that P116 is a versatile lipid acquisition and delivery machinery that shortcuts the multi-protein pathways used by more complex organisms. Thus, our work advances the understanding of common lipid transport strategies, which may aid research into the mechanisms of more complex lipid-handling machineries.