Refine
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Bag6 (1)
- E3 ligase (1)
- Mislocalised proteins (1)
- Proteasomes (1)
- Protein degradation (1)
- TPR (1)
- Ubiquitylation (1)
- affinity purification (1)
- deubiquitinating enzyme (1)
- mass spectrometry (1)
Ubiquitination regulates nearly all cellular processes by coordinated activity of ubiquitin writers (E1, E2, and E3 enzymes), erasers (deubiquitinating enzymes) and readers (proteins that recognize ubiquitinated proteins by their ubiquitin-binding domains). By differentially modifying cellular proteome and by recognizing these ubiquitin modifications, ubiquitination machinery tightly regulates execution of specific cellular events in space and time. Dynamic and complex ubiquitin architecture, ranging from monoubiquitination, multiple monoubiquitination, eight different modes of homotypic and numerous types of heterogeneous polyubiquitin linkages, enables highly dynamic and complex regulation of cellular processes. We discuss available tools and approaches to study ubiquitin networks, including methods for the identification and quantification of ubiquitin-modified substrates, as well as approaches to quantify the length, abundance, linkage type and architecture of different ubiquitin chains. Furthermore, we also summarize the available approaches for the discovery of novel ubiquitin readers and ubiquitin-binding domains, as well as approaches to monitor and visualize activity of ubiquitin conjugation and deconjugation machineries. We also discuss benefits, drawbacks and limitations of available techniques, as well as what is still needed for detailed spatiotemporal dissection of cellular ubiquitination networks
Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation.
Targeted protein degradation is a drug modality represented by compounds that recruit a target to an E3 ubiquitin ligase to promote target ubiquitination and proteasomal degradation. Historically, the field distinguishes monovalent degraders from bifunctional degraders (PROTACs) that connect target and ligase via separate binding ligands joined via a linker1–4. Here, we elucidate the mechanism of action of a PROTAC-like degrader of the transcriptional coactivator BRD4, composed of a BRD4 ligand linked to a ligand for the E3 ligase CRL4DCAF15. Using orthogonal CRISPR/Cas9 screens we identify the degrader activity is independent of DCAF15, and relies on a different CRL4 substrate receptor, DCAF16. We demonstrate an intrinsic affinity between BRD4 and DCAF16, which is dependent on the tandem bromodomains of BRD4 and further increased by the degrader without physically engaging DCAF16 in isolation. Structural characterization of the resulting ternary complex reveals both BRD4 bromodomains are bivalently engaged in cis by the degrader and are bound to DCAF16 through several interfacial BRD4-DCAF16 and degrader-DCAF16 contacts. Our findings demonstrate that intramolecularly bridging domains can confer glue-type stabilization of intrinsic target-E3 interactions, and we propose this as a general strategy to modulate the surface topology of target proteins to nucleate co-opting of E3 ligases or other cellular effector proteins for effective proximity-based pharmacology.
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
The selective autophagy of mitochondria is linked to mitochondrial quality control and is critical to a healthy organism. Ubiquitylation is sometimes needed for marking damaged mitochondria for disposal but also for governing the expression and turnover of critical regulatory proteins. We have conducted a CRISPR/Cas9 screen of human E3 ubiquitin ligases for influence on mitophagy under both basal cell culture conditions and following acute mitochondrial depolarisation. We identify two Cullin RING ligases, VHL and FBXL4 as the most profound negative regulators of basal mitophagy. Here we show that these converge through control of the mitophagy adaptors BNIP3 and BNIP3L/NIX, but that this is achieved through different mechanisms. FBXL4 suppression of BNIP3 and NIX levels is mediated via direct interaction and protein destabilisation rather than suppression of HIF1α-mediated transcription. Depletion of NIX but not BNIP3 is sufficient to restore mitophagy levels. Our study enables a full understanding of the aetiology of early onset mitochondrial encephalomyopathy that is supported by analysis of a disease associated mutation. We further show that the compound MLN4924, which globally interferes with Cullin RING ligase activity, is a strong inducer of mitophagy which can provide a research tool in this context as well as a candidate therapeutic agent for conditions linked to mitochondrial quality control.
Functional genomics studies in model organisms and human cell lines provided important insights into gene functions and their context-dependent role in genetic circuits. However, our functional understanding of many of these genes and how they combinatorically regulate key biological processes, remains limited. To enable the SpCas9-dependent mapping of gene-gene interactions in human cells, we established 3Cs multiplexing for the generation of combinatorial gRNA libraries in a distribution-unbiased manner and demonstrate its robust performance. The optimal number for combinatorial hit calling was 16 gRNA pairs and the skew of a library’s distribution was identified as a critical parameter dictating experimental scale and data quality. Our approach enabled us to investigate 247,032 gRNA-pairs targeting 12,736 gene-interactions in human autophagy. We identified novel genes essential for autophagy and provide experimental evidence that gene-associated categories of phenotypic strengths exist in autophagy. Furthermore, circuits of autophagy gene interactions reveal redundant nodes driven by paralog genes. Our combinatorial 3Cs approach is broadly suitable to investigate unexpected gene-interaction phenotypes in unperturbed and diseased cell contexts.
CIN85 is a multidomain adaptor protein implicated in Cbl-mediated down-regulation of receptor tyrosine kinases. CIN85 binding to Cbl is increased after growth factor stimulation and is critical for targeting receptor tyrosine kinases to clathrin-mediated endocytosis. Here we report the identification of a novel polyproline-arginine motif (PXXXPR), specifically recognized by the SH3 domains of CIN85 and its homologue CMS/CD2AP. This motif was indispensable for CIN85 binding to Cbl/Cbl-b, to other CIN85 SH3 domains' effectors, and for mediating an intramolecular interaction between the SH3-A domain and the proline-rich region of CIN85. Individual SH3 domains of CIN85 bound to PXXXPR peptides of Cbl/Cbl-b with micromolar affinities, whereas an extended structure of two or three SH3 domains bound with higher stoichiometry and increased affinity to the same peptides. This enabled full size CIN85 to simultaneously interact with multiple Cbl molecules, promoting their clustering in mammalian cells. The ability of CIN85 to cluster Cbl was important for ligand-induced stabilization of CIN85.Cbl.epidermal growth factor receptor complexes, as well as for epidermal growth factor receptor degradation in the lysosome. Thus, specific interactions of CIN85 SH3 domains with the PXXXPR motif in Cbl play multiple roles in down-regulation of receptor tyrosine kinases.