### Refine

#### Language

- English (17)

#### Has Fulltext

- yes (17)

#### Is part of the Bibliography

- no (17)

#### Keywords

- 1st order liquid–gas phase transition (1)
- Cluster integrals (1)
- Critical indices (1)
- Equation of State (1)
- Hadron Gas Modell (1)
- Lorentz (1)
- Lorentz contraction (1)
- Nuclear matter (1)
- Relativistic Excluded Volumes (1)
- Scaling laws (1)

#### Institute

Recent results on transverse mass spectra of J/psi and psi prime mesons in central Pb+Pb collisions at 158 AGeV are considered. It is shown that those results support a hypothesis of statistical production of charmonia at hadronization and suggest the early thermal freeze-out of J/psi and psi prime mesons. Based on this approach the collective transverse velocity of hadronizing quark gluon plasma is estimated to be <v^H_T> \approx 0.2. Predictions for transverse mass spectra of hidden and open charm mesons at SPS and RHIC are discussed.

Conventional cluster and virial expansions are generalized to momentum dependent interparticle potentials. The model with Lorentz contracted hard core potentials is considered, e.g. as hadron gas model. A Van der Waals-type model with a temperature dependent excluded volume is derived. Lorentz contraction effects at given temperature are stronger for light particles and make their effective excluded volume smaller than that of heavy ones.

The transverse mass spectra of Omega hyperons and phi mesons measured recently by STAR Collaboration in Au+Au collisions at sqrt(s_NN) = 130 GeV are described within a hydrodynamic model of the quark gluon plasma expansion and hadronization. The flow parameters at the plasma hadronization extracted by fitting these data are used to predict the transverse mass spectra of J/psi and psi' mesons.

Transverse activity of kaons and the deconfinement phase transition in nucleus-nucleus collisions
(2003)

We found that the experimental results on transverse mass spectra of kaons produced in central Pb+Pb (Au+Au) interactions show an anomalous dependence on the collision energy. The inverse slopes of the spectra increase with energy in the low (AGS) and high (RHIC) energy domains, whereas they are constant in the intermediate (SPS) energy range. We argue that this anomaly is probably caused by a modification of the equation of state in the transition region between confined and deconfined matter. This observation may be considered as a new signal, in addition to the previously reported anomalies in the pion and strangeness production, of the onset of deconfinement located in the low SPS energy domain.

The transverse mass spectra of J/psi and psi' mesons and Omega hyperons produced in central Au+Au collisions at RHIC energies are discussed within a statistical model used successfully for the interpretation of the SPS results. The comparison of the presented model with the future RHIC data should serve as a further crucial test of the hypothesis of statistical production of charmonia at hadronization. Finally, in case of validity, the approach should allow to estimate the mean transverse flow velocity at the quark gluon plasma hadronization.

The transverse mass spectra of Omega, J/psi and psi' in Pb+Pb collisions at 158 AGeV are studied within a hydrodynamical model of the quark gluon plasma expansion and hadronization. The model reproduces the existing data with the common hadronization parameters: temperature T=T_H = 170 MeV and average collective transverse velocity v_T = 0.2.

Using an advanced version of the hadron resonance gas model we have found several remarkable irregularities at chemical freeze-out. The most prominent of them are two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at center of mass energies 3.6-4.9 GeV and 7.6-10 GeV. The low energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shockadiabat model we demonstrate that the low energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties of the mixed phase at its boundary to the quark-gluon plasma. The question is whether the high energy correlated quasi-plateaus are also related to some kind of mixed phase. In order to answer this question we employ the results of a systematic meta-analysis of the quality of data description of 10 existing event generators of nucleus-nucleus collisions in the range of center of mass collision energies from 3.1 GeV to 17.3 GeV. These generators are divided into two groups: the first group includes the generators which account for the quark-gluon plasma formation during nuclear collisions, while the second group includes the generators which do not assume the quark-gluon plasma formation in such collisions. Comparing the quality of data description of more than a hundred of different data sets of strange hadrons by these two groups of generators, we find two regions of the equal quality of data description which are located at the center of mass collision energies 4.3-4.9 GeV and 10.-13.5 GeV. These two regions of equal quality of data description we interpret as regions of the hadron-quark-gluon mixed phase formation. Such a conclusion is strongly supported by the irregularities in the collision energy dependence of the experimental ratios of the Lambda hyperon number per proton and positive kaon number per Lambda hyperon. Although at the moment it is unclear, whether these regions belong to the same mixed phase or not, there are arguments that the most probable collision energy range to probe the QCD phase diagram (tri)critical endpoint is 12-14 GeV.

We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard core repulsion. The suggested equation of state explicitly contains the surface tension which is induced by particle interaction. At high densities such a surface tension vanishes and in this way it switches the excluded volume treatment of hard core repulsion to its eigen volume treatment. The great advantage of the developed model is that the number of equations to be solved is two and it does not depend on the number of independent hard-core radii. Using the suggested equation of state we obtained a high quality fit of the hadron multiplicities measured at AGS, SPS, RHIC and ALICE energies and studied the properties of the nuclear matter phase diagram. It is shown the developed equation of state is softer than the gas of hard spheres and remains causal up to the several normal nuclear densities. Therefore, it could be applied to the neutron star interior modeling.

Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.