Refine
Year of publication
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- nuclear reactions (4)
- Partikelspektren (2)
- freeze out (2)
- hydrodynamic description (2)
- nuclear hydrodynamics (2)
- particle spectra (2)
- viscosity (2)
- 20Ne + 238U (1)
- Ar + Pb (800 MeV/nucleon) relativistic heavy-ion reactions (1)
- Ar+Ca (1)
Institute
We present a theoretical description of nuclear collisions which consists of a three-dimensional fluid-dynamical model, a chemical equilibrium breakup calculation for local light fragment (i.e., p, n, d, t, 3He, and 4He) production, and a final thermal evaporation of these particles. The light fragment cross sections and some properties of the heavy target residues are calculated for the asymmetric system Ne+U at 400 MeV/N. The results of the model calculations are compared with recent experimental data. Several observable signatures of the collective hydrodynamical processes are consistent with the present data. An event-by-event analysis of the flow patterns of the various clusters is proposed which can yield deeper insight into the collision dynamics.
Possible hadronization of supercooled QGP, created in heavy ion collisions at RHIC and SPS, is discussed within a Bjorken hydrodynamic model. Such a hadronization is expected to be a very fast shock-like process, what, if hadronization coincides or shortly followed by freeze out, could explain a part of the HBT puzzle, i.e., the flash-like particle emission (Rout/Rside≈1). HBT data also show that the expansion time before freeze out is very short (∼6–10 fm/c). In this Letter we discuss the question of supercooled QGP and the timescale of the reaction.
NCQ scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model from ideal, deconfined and chirally symmetric Quark Gluon Plasma (QGP), to final non-interacting hadrons. In this transition the quarks gain constituent quark mass while the background Bag-field breaks up. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down. Then the resulting temperatures and flow velocities of baryons and mesons will be different. In a simplified model, we reproduce the constituent quark number scaling.
We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter Z. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3 6%, then it is reheated, and the hadronization is completed within 6 10 fm/c, i.e. 5 10 times faster than it was estimated earlier, in a strongly nonequilibrium way. PACS: 12.38.Mh; 12.39.Ba; 25.75.-q; 64.60.Qb
Freeze out of particles across three dimensional space-time hypersurface is discussed in a simple kinetic model. The final momentum distribution of emitted particles, for freeze out surfaces with space-like normal, shows a non-exponential transverse momentum spectrum. The slope parameter of the pt distribution increases with increasing pt, in agreement with recently measured SPS pion and h spectra.
In continuum and fluid dynamical models, particles, which leave the system and reach the detectors, can be taken into account via freeze-out (FO) or final break-up schemes, where the frozen out particles are formed on a 3-dimensional hypersurface in space-time. Such FO descriptions are important ingredients of evaluations of two-particle correlation data, transverse-, longitudinal-, radial- and cylindrical- flow analyses, transverse momentum and transverse mass spectra and many other observables. The FO on a hypersurface is a discontinuity, where the pre FO equilibrated and interacting matter abruptly changes to non-interacting particles, showing an ideal gas type of behavior.
In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity.
We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze out through 3-dimensional hypersurfaces with space-like normal. We study some suggested solutions for this problem, and demonstrate it on one example. PACS: 24.10.Nz, 25.75.-q
Kinetic freeze out models
(1999)
Freeze out of particles across a space-time hypersurface is discussed in kinetic models. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with spacelike normals. The resulting non-equilibrium distribution does not resemble, the previously proposed, cut Jüttner distribution, and shows non-exponential pt-spectra similar to the ones observed in experiments. PACS: 24.10.Nz, 25.75.-q
The freeze out of the expanding systems, created in relativistic heavy ion collisions, is discussed. We combine kinetic freeze out equations with Bjorken type system expansion into a unified model. The important feature of the proposed scenario is that physical freeze out is completely finished in a finite time, which can be varied from 0 (freeze out hypersurface) to infinit. The dependence of the post freeze out distribution function on the freeze out time will be studied. Model allows analytical analyses for the simplest systems such as pion gas. We shall see that the basic freeze out features, pointed out in the earlier works, are not smeared out by the expansion of the system. The entropy evolution in such a scenario is also studied.