Refine
Year of publication
Document Type
- Article (314)
- Preprint (301)
- Working Paper (1)
Language
- English (616)
Has Fulltext
- yes (616)
Is part of the Bibliography
- no (616)
Keywords
- BESIII (20)
- e +-e − Experiments (17)
- Branching fraction (12)
- Particle and Resonance Production (8)
- Quarkonium (7)
- Charm Physics (6)
- Spectroscopy (6)
- Hadronic decays (5)
- Branching fractions (4)
- Charmonium (4)
Institute
- Physik (505)
- Frankfurt Institute for Advanced Studies (FIAS) (102)
- Geowissenschaften / Geographie (3)
- Center for Financial Studies (CFS) (1)
- Exzellenzcluster Makromolekulare Komplexe (1)
- Geowissenschaften (1)
- House of Finance (HoF) (1)
- Medizin (1)
- Sonderforschungsbereiche / Forschungskollegs (1)
- Sustainable Architecture for Finance in Europe (SAFE) (1)
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at sNN−−−√ = 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first-order and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultrarelativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus, forming a short-lived vector meson (e.g., ρ0). In this experiment, the polarization was used in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ρ0 → π+π− decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ0 travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions and found to be 6.53 ± 0.06 fm (197Au) and 7.29 ± 0.08 fm (238U), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of nonidentical particles. Polarized photon-gluon fusion reveals quantum wave interference of non-identical particles and shape of high-energy nuclei.
We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum (pT) at mid-rapidity (|y|< 0.7) in p+p collisions at s√=200 GeV. The result is presented for 2.5 <pT< 10 GeV/c with an improved precision at high pT with respect to the previous measurements, and thus provides a better constraint on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.
We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum (pT) at mid-rapidity (|y|< 0.7) in p+p collisions at s√=200 GeV. The result is presented for 2.5 <pT< 10 GeV/c with an improved precision above 6 GeV/c with respect to the previous measurements, providing more constraints on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.
Measurement of cold nuclear matter effects for inclusive J/ψ in p+Au collisions at √sNN = 200 GeV
(2022)
Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive J/ψ at mid-rapidity in 0-100\% p+Au collisions at sNN−−−√ = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, RpAu, obtained by taking a ratio of J/ψ yield in p+Au collisions to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The differential J/ψ yield in both p+p and p+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the J/ψ RpAu is derived within the transverse momentum (pT) range of 0 to 10 GeV/c. A suppression of approximately 30% is observed for pT<2 GeV/c, while J/ψ RpAu becomes compatible with unity for pT greater than 3 GeV/c, indicating the J/ψ yield is minimally affected by the CNM effects at high pT. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong J/ψ suppression above 3 Gev/c is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured J/ψ RpAu, while their agreement with the J/ψ yields in p+p and p+Au collisions is worse.
The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn =200 GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg.
We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance (AJ) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range 0.1< \tsj <0.3, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.