Refine
Year of publication
Document Type
- Article (342)
- Preprint (261)
- Working Paper (1)
Language
- English (604)
Has Fulltext
- yes (604)
Is part of the Bibliography
- no (604)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (7)
- Quarkonium (7)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
Utilizing the dataset corresponding to an integrated luminosity of 2.93 fb−1 at s√=3.773 GeV collected by the BESIII detector, we report the first amplitude analysis and branching fraction measurement of the D0→K−π+π0π0 decay. We investigate the sub-structures and determine the relative fractions and the phases among the different intermediate processes. Our results are used to provide an accurate detection efficiency and allow measurement of B(D0→K−π+π0π0)=(8.86±0.13(stat)±0.19(syst))%.
Using a data sample of 448.1×106 𝜓(3686) events collected at √𝑠=3.686 GeV with the BESIII detector at the Beijing Electron-Positron Collider II, we search for the rare decay 𝐽/𝜓→𝜙𝑒+𝑒− via 𝜓(3686)→𝜋+𝜋−𝐽/𝜓. No signal events are observed and the upper limit on the branching fraction is set to be ℬ(𝐽/𝜓→𝜙𝑒+𝑒−)<1.2×10−7 at the 90% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
Using a data sample of 448.1×106 ψ(3686) events collected at s√= 3.686 GeV with the BESIII detector at the BEPCII, we search for the rare decay J/ψ→ϕe+e− via ψ(3686)→π+π−J/ψ. No signal events are observed and the upper limit on the branching fraction is set to be B(J/ψ→ϕe+e−)<1.2×10−7 at the 90\% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
We report on new measurements of Cabibbo-suppressed semileptonic D+s decays using 3.19 fb−1 of e+e− annihilation data sample collected at a center-of-mass energy of 4.178~GeV with the BESIII detector at the BEPCII collider. Our results include branching fractions B(D+s→K0e+νe)=(3.25±0.38(stat.)±0.16(syst.))×10−3 and B(D+s→K∗0e+νe)=(2.37±0.26(stat.)±0.20(syst.))×10−3 which are much improved relative to previous measurements, and the first measurements of the hadronic form-factor parameters for these decays. For D+s→K0e+νe, we obtain f+(0)=0.720±0.084(stat.)±0.013(syst.), and for D+s→K∗0e+νe, we find form-factor ratios rV=V(0)/A1(0)=1.67±0.34(stat.)±0.16(syst.) and r2=A2(0)/A1(0)=0.77±0.28(stat.)±0.07(syst.).
We study the electromagnetic Dalitz decay 𝐽/𝜓→𝑒+𝑒−𝜂 and search for dielectron decays of a dark gauge boson (𝛾′) in 𝐽/𝜓→𝛾′𝜂 with the two 𝜂 decay modes 𝜂→𝛾𝛾 and 𝜂→𝜋+𝜋−𝜋0 using (1310.6±7.0)×106 𝐽/𝜓 events collected with the BESIII detector. The branching fraction of 𝐽/𝜓→𝑒+𝑒−𝜂 is measured to be (1.43±0.04(stat)±0.06(syst))×10−5, with a precision that is improved by a factor of 1.5 over the previous BESIII measurement. The corresponding dielectron invariant mass dependent modulus square of the transition form factor is explored for the first time, and the pole mass is determined to be Λ=2.84±0.11(stat)±0.08(syst) GeV/𝑐2. We find no evidence of 𝛾′ production and set 90% confidence level upper limits on the product branching fraction ℬ(𝐽/𝜓→𝛾′𝜂)×ℬ(𝛾′→𝑒+𝑒−) as well as the kinetic mixing strength between the standard model photon and 𝛾′ in the mass range of 0.01≤𝑚𝛾′≤2.4 GeV/𝑐2.
We report new measurements of the cross sections for the production of Dbar D final states at the ψ(3770) resonance. Our data sample consists of an integrated luminosity of 2.93 fb−1 of e+e− annihilation data produced by the BEPCII collider and collected and analyzed with the BESIII detector. We exclusively reconstruct three D0 and six D+ hadronic decay modes and use the ratio of the yield of fully reconstructed Dbar D events ("double tags") to the yield of all reconstructed D or bar D mesons ("single tags") to determine the number of D0bar D0 and D+D− events, benefiting from the cancellation of many systematic uncertainties. Combining these yields with an independent determination of the integrated luminosity of the data sample, we find the cross sections to be σ(e+e− → D0bar D0) nb and σ(e+e− → D+D−) = (2.830 ± 0.011 ± 0.026) nb, where the uncertainties are statistical and systematic, respectively.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→K0SK0SK+, D+→K0SK0Sπ+, D0→K0SK0S and D0→K0SK0SK0S. They are determined to be B(D+→K0SK0SK+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→K0SK0Sπ+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→K0SK0S)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→K0SK0SK0S)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→K0SK0SK+, D+→K0SK0Sπ+, D0→K0SK0S and D0→K0SK0SK0S. They are determined to be B(D+→K0SK0SK+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→K0SK0Sπ+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→K0SK0S)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→K0SK0SK0S)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
By analyzing 2.93 fb−1 data collected at the center-of-mass energy s√=3.773 GeV with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+→K¯0e+νe to be B(D+→K¯0e+νe)=(8.59±0.14±0.21)% using K¯0→K0S→π0π0, where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.