Refine
Year of publication
Language
- English (570)
Has Fulltext
- yes (570)
Is part of the Bibliography
- no (570)
Keywords
- BESIII (11)
- e +-e − Experiments (9)
- LHC (8)
- Branching fraction (6)
- Heavy-ion collisions (6)
- Particle and Resonance Production (5)
- ALICE (3)
- ALICE experiment (3)
- Charm Physics (3)
- Diffraction (3)
Institute
- Physik (449)
- Frankfurt Institute for Advanced Studies (FIAS) (171)
- Informatik (58)
- Medizin (5)
- Biochemie und Chemie (1)
- Biowissenschaften (1)
- Georg-Speyer-Haus (1)
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at √sNN = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT > 5 GeV/c relative to that in p + p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP.
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ, which signifies the existence of the ΔI=3/2 transition in Λ for the first time. Beside, we test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
Using (10087±44)×106 J/ψ events collected with the BESIII detector, numerous Ξ− and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ−Ξ¯+→Λ(pπ−)π−Λ¯(n¯π0)π+ and its charge-conjugate channel. The precisions of α0 for Λ→nπ0 and α¯0 for Λ¯→n¯π0 compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ0 to that of Λ→pπ−, ⟨α0⟩/⟨αΛ−⟩, is determined to be 0.873±0.012+0.011−0.010, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity, which is predicted by the ΔI=1/2 rule, with a statistical significance of more than 5σ. We test for CP violation in Ξ−→Λπ− and in Λ→nπ0 with the best precision to date.
Based on e+e− collision data collected at center-of-mass energies from 2.000 to 3.080 GeV by the BESIII detector at the BEPCII collider, a partial wave analysis is performed for the process e+e−→K0SK0Lπ0. The results allow the Born cross sections of the process e+e−→K0SK0Lπ0, as well as its subprocesses e+e−→K∗(892)0K¯ and K∗2(1430)0K¯ to be measured. The Born cross sections for e+e−→K0SK0Lπ0 are consistent with previous measurements by BaBar and SND, but with substantially improved precision. The Born cross section lineshape of the process e+e−→K∗(892)0K¯ is consistent with a vector meson state around 2.2 GeV with a statistical significance of 3.2σ. A Breit-Wigner fit determines its mass as MY=(2164.1±9.6±3.1) MeV/c2 and its width as ΓY=(32.4±21.1±1.5) MeV, where the first uncertainties are statistical and the second ones are systematic, respectively.