Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Dicarboxylic acids (2)
- Methylorubrum extorquens (2)
- Methylorubrum extorquens AM1 (2)
- 3-Hydroxybutyric acid (1)
- Acid transporters (1)
- Alphaproteobacteria (1)
- Background expression (1)
- Chemical ecology (1)
- Cumate (1)
- Enzyme engineering (1)
In view of a growing world population and the finite nature of fossil resources, the development of eco-friendly production processes is essential for the transition towards a sustainable industry. Methanol, which can be produced both petrochemically and from renewable resources, offers itself as bridging technology and attractive alternative raw material for biotechnological processes. This work describes developments for the progress of the well-studied methylotrophic α proteobacterium Methylorubrum extorquens AM1 towards an efficient methylotrophic cell factory. Although many homologous and heterologous production routes have already been described and realized for M. extorquens in a laboratory scale, no industrial process has yet been realized. Three major reasons can be identified for this: (1) A limited choice of tools for genetic modifications, (2) a lack of understanding of carbon fluxes and side reactions occurring in modified strains, such as product reimports, and (3) the lack of tailored production strains for profitable target products and optimized bioprocessing protocols. The aim of the present work was to achieve developments for the mentioned areas. As a model application, the high-level production of chiral dicarboxylic acids from the substrate methanol was chosen. Enantiomerically pure chiral compounds are of great interest, e.g., as building blocks for chiral drugs. The ethylmalonyl CoA metabolic pathway (EMCP) which is part of the primary metabolism of M. extorquens, harbors unique chiral CoA-ester intermediates. Their acid derivatives can be released by cleavage of the CoA-moiety using heterologous enzymes. The dicarboxylic acids 2 methylsuccinic acid and mesaconic acid were produced in a previous study by introducing the heterologous thioesterase YciA into M. extorquens. In the said study, a combined product titer of 0.65 g/L was obtained in shake flask experiments. These results serve as the basis for the developments in the present work.
First, the previously described reuptake of products was thoroughly investigated and dctA2, a gene encoding for an acid transporter, was identified as target for reducing the product reuptake. In addition, reuptake of mesaconic acid was prevented by converting it to (S)-citramalic acid, a product not metabolizable by M. extorquens, by the introduction of a heterologous mesaconase. Together with 2-methylsuccinic acid, for which a high enantiomeric excess of (S)-2-methylsuccinic acid was determined, a second chiral molecule was thus added to the product spectrum. For the release of dicarboxylic acid products, YciA, a broad-range thioesterase that accepts a variety of CoA-esters with different chain lengths as substrates, was chosen. The enzyme should theoretically be able to hydrolyze all CoA-esters of interest present in the EMCP. However, in culture supernatants of M. extorquens strains that were overexpressing the corresponding yciA gene, only mesaconic acid and 2 methylsuccinic acid could be detected. To expand the substrate spectrum of YciA thioesterase with respect to other EMCP intermediates, semi-rational enzyme engineering was attempted. Screening of the corresponding strains carrying the respective YciA variants did not result in strains capable of producing new dicarboxylic acid products. However, the experiments revealed an amino acid position that strongly affected the production of mesaconic acid and 2-methylsuccinic acid in vivo. By substituting the according amino acid in YciA, the maximum titers of mesaconic acid and 2-methylsuccinic acid could be increased substantially. Application of an improved thioesterase variant in a second E. coli-based process confirmed the enhanced activity of the enzyme. The desired extension of the product spectrum by another chiral molecule (2-hydroxy-3-methylsuccinic acid, presumably the (2S,3R)-form) was finally achieved by using an alternative thioesterase. Tailored fermentation strategies were developed for the high-level production of the above-mentioned products.
As second part of the work, two novel genetic tools for M. extorquens were developed and characterized. The pBBR1-derived plasmid pMis1_1B was shown to be stably maintained in M. extorquens cells. In addition, its suitability for co-transformations with other plasmids was demonstrated. The second tool, the cumate-inducible promoter Ps6, is tailored for expression of pathways with toxic products, as the transcription of genes controlled by Ps6 is strongly repressed in the absence of an inducer.
Overall, the present work demonstrates the enormous potential of using M. extorquens as a methylotrophic cell factory. In the applications shown, the biotechnological production of high-priced chiral molecules is combined with the use of an attractive alternative substrate. In addition, new achievements and approaches are presented to facilitate the development of future M. extorquens production strains.
Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria–nematode–insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship.
Methylorubrum extorquens is an important model methylotroph and has enormous potential for the development of C1-based microbial cell factories. During strain construction, regulated promoters with a low background expression level are important genetic tools for expression of potentially toxic genes. Here we present an accordingly optimised promoter, which can be used for that purpose. During construction and testing of terpene production strains harbouring a recombinant mevalonate pathway, strong growth defects were observed which made strain development impossible. After isolation and characterisation of suppressor mutants, we discovered a variant of the cumate-inducible promoter PQ2148 used in this approach. Deletion of 28 nucleotides resulted in an extremely low background expression level, but also reduced the maximal expression strength to about 30% of the original promoter. This tightly repressed promoter version is a powerful module for controlled expression of potentially toxic genes in M. extorquens.
The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids.
Engineering of thioesterase YciA from Haemophilus influenzae for production of carboxylic acids
(2023)
Acyl-CoA-thioesterases, which hydrolyze acyl-CoA-esters and thereby release the respective acid, have essential functions in cellular metabolism and have also been used to produce valuable compounds in biotechnological processes. Thioesterase YciA originating from Haemophilus influenzae has been previously used to produce specific dicarboxylic acids from CoA-bound intermediates of the ethylmalonyl CoA pathway (EMCP) in Methylorubrum extorquens. In order to identify variants of the YciA enzyme with the capability to hydrolyze so far inaccessible CoA-esters of the EMCP or with improved productivity, we engineered the substrate-binding region of the enzyme. Screening a small semi-rational mutant library directly in M. extorquens yielded the F35L variant which showed a drastic product level increase for mesaconic acid (6.4-fold) and 2-methylsuccinic acid (4.4-fold) compared to the unaltered YciA enzyme. Unexpectedly, in vitro enzyme assays using respective M. extorquens cell extracts or recombinantly produced thioesterases could not deliver congruent data, as the F35L variant showed strongly reduced activity in these experiments. However, applied in an Escherichia coli production strain, the protein variant again outperformed the wild-type enzyme by allowing threefold increased 3-hydroxybutyric acid product titers. Saturation mutagenesis of the codon for position 35 led to the identification of another highly efficient YciA variant and enabled structure-function interpretations. Our work describes an important module for dicarboxylic acid production with M. extorquens and can guide future thioesterase improvement approaches.
Plasmids are one of the most important genetic tools for basic research and biotechnology, as they enable rapid genetic manipulation. Here we present a novel pBBR1-based plasmid for Methylorubrum extorquens, a model methylotroph that is used for the development of C1-based microbial cell factories. To develop a vector with compatibility to the so far mainly used pCM plasmid system, we transferred the pBBR1-based plasmid pMiS1, which showed an extremely low transformation rate and caused a strong growth defect. Isolation of a suppressor mutant with improved growth led to the isolation of the variant pMis1_1B. Its higher transformation rate and less pronounced growth defect phenotype could be shown to be the result of a mutation in the promotor region of the rep gene. Moreover, cotransformation of pMis1_1B and pCM160 was possible, but the resulting transformants showed stronger growth defects in comparison with a single pMis1_1B transformant. Surprisingly, cotransformants carrying pCM160 and a pMis1_1B derivative containing a mCherry reporter construct showed higher fluorescence levels than strains containing only the pMis1_1B-based reporter plasmids or a corresponding pCM160 derivative. Relative plasmid copy number determination experiments confirmed our hypothesis of an increased copy number of pMis1_1B in the strain carrying both plasmids. Despite the slight metabolic burden caused by pMis1_1B, the plasmid strongly expands the genetic toolbox for M. extorquens.