Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Archaeopteryx (1)
- Hesperornis (1)
- Mesozoic (1)
- Pneumaticity (1)
- air sacs (1)
- craniofacial morphology (1)
- lchtlryornis (1)
- phylogeny (1)
Birds are characterized by pneumatization of their skeletons by epithelial diverticula from larger, air-filled cavities. The diverticula-or 'air sacs'-that invade the postcranium result from outgrowths of the lungs; poslcranial pneumaticity has been very well studied. Much more poorly understood are the air sacs that pneumatize the skull. Study or craniofacial pneumaticity in modern birds (Neornithes) indicates the presence of two separate systems: nasal pneumaticity and tympanic pneumaticity, The lacrimal and maxillary bones arc pneumatized by diverticula of the main paranasal cavity, the antorbital sinus. There are five tympanic diverticula in neornithines that pneumatize the quadrate, articulare and the bones of the braincase. The pneumatic features of the following six genera of Mesozoic birds are examined: Archaeopteryx, Ellaliornis, Baplomis, Parahesperornis, Hesperornis and lchthyornis. Despite the 'archaic' aspect of most of these birds, many of the pneumatic features of neornithines are found in .Mesozoic birds and are considered primitive for Aves. The phylogenetic levels at which most of the avian pneumatic features arose within Archosauria are uncertain. Until the phylogenetic levels at which homologous pneumatic features arose are determined, it is unwise to use most pneumatic characters in the discussion of avian origins. Within avian phylogeny, Ornithurae and Neornithes are well-supported by pneumatic synapomorphies. There is a trend towards reduction of craniofacial pneumaticity within Hesperornithiformes. Witthin Neornithes, four derived pneumatic characters suggest that the Palaeognathae (ratites and tinamous) is monophyletic.
Homology of virtually all major components of facial anatomy is assessed in Archosauria in order to address the function of the antorbital cavity, an enigmatic structure that is diagnostic for the group. Proposed functions center on its being a housing for a gland, a muscle, or a paranasal air sinus. Homology is approached in the context of the Extant Phylogenetic Bracket method of reconstructing unpreserved aspects of extinct organisms. Facial anatomy and its ontogeny was studied in extant archosaurs (birds and crocodilians) to determine the osteological correlates of each soft-tissue component; resemblances between birds and crocodilians comprised the similarity test of homology. The congruence test of homology involved surveying phyiogenetically relevant fossil archosaurs for these bony signatures. The facial anatomy of extant birds and crocodilians is examined in detail to provide background and to discover those apomorphic aspects that contribute to the divergent specialization of these two groups and thus obscure homologies. Birds apomorphically show enlarged eyeballs, expanded nasal vestibules, and reduced maxillae, whereas crocodilian faces are dorsoventrally flattened (due to nasal rotation) and elongated. Most facial attributes of archosaurs are demonstrably homologous and in fact characterize much more inclusive groups. Special emphasis has been placed on the nasal conchae and paranasal air sinuses. Within Amniota, the following conchal structures are homologous, and all others are neomorphs: avian caudal concha, crocodilian concha + preconcha, Sphenodon caudal concha, squamate concha, and probably the mammalian crista semicircularis. The avian antorhital paranasal air sinus is homologous with the crocodilian caviconchal sinus; the maxillary sinus of placental mammals is not homologous with the archosaurian paranasal sinus. With regard to the function of the antorbital cavity, archosaurs possess homologous nasal glands, dorsal pterygoideus muscles, and paranasal air sinuses, but the osteological correlates of only the paranasal sinus involve the antorbital fenestrae and fossae. Thus, the antorbital cavity is best interpreted as principally a pneumatic structure.