Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
Institute
- Medizin (9)
Highlights
• Early reconstruction of injured cruciate ligaments improves functional outcomes.
• Modern CT imaging can be used to rapidly identify patients with injury to the cruciate ligaments and streamline therapeutic pathways.
• Dual-energy CT demonstrates superior diagnostic accuracy compared to single-energy CT.
Abstract
Background: This study aimed to evaluate the clinical utility of modern single and dual-energy computed tomography (CT) for assessing the integrity of the cruciate ligaments in patients that sustained acute trauma.
Methods: Patients who underwent single- or dual-energy CT followed by 3 Tesla magnetic resonance imaging (MRI) or knee joint arthroscopy between 01/2016 and 12/2022 were included in this retrospective, monocentric study. Three radiologists specialized in musculoskeletal imaging independently evaluated all CT images for the presence of injury to the cruciate ligaments. An MRI consensus reading of two experienced readers and arthroscopy provided the reference standard. Diagnostic accuracy parameters and area under the receiver operator characteristic curve (AUC) were the primary metrics for diagnostic performance.
Results: CT images of 204 patients (median age, 49 years; IQR 36 – 64; 113 males) were evaluated. Dual-energy CT yielded significantly higher diagnostic accuracy and AUC for the detection of injury to the anterior (94% [240/255] vs 75% [266/357] and 0.89 vs 0.66) and posterior cruciate ligaments (95% [243/255] vs 87% [311/357] and 0.90 vs 0.61) compared to single-energy CT (all parameters, p <.005). Diagnostic confidence and image quality were significantly higher in dual-energy CT compared to single-energy CT (all parameters, p <.005).
Conclusions: Modern dual-energy CT is readily available and can serve as a screening tool for detecting or excluding cruciate ligament injuries in patients with acute trauma. Accurate diagnosis of cruciate ligament injuries is crucial to prevent adverse outcomes, including delayed treatment, chronic instability, or long-term functional limitations.
Das Ziel dieser Studie war der retrospektive Vergleich zweier fortschrittlicher robotergestützter Angiographie-Systeme in Bezug auf Strahlendosis und Bildqualität bei der Bildgebung im Rahmen der konventionellen transarteriellen Chemoembolisation (cTACE) von bösartigen Lebertumoren.
Dafür haben wir 106 Patienten (insgesamt 57 Frauen und 49 Männer; Durchschnittsalter 60 ± 11 Jahre), welche eine cTACE Therapie an einem der zwei Generationen von Roboter-Angiographieplattformen erhalten hatten, einbezogen. Die Patienten wurden in zwei Gruppen eingeteilt (n=53): Gruppe 1 (Behandlung am Gerät der ersten Generation) und Gruppe 2 (Behandlung am Gerät der zweiten Generation). Die Strahlendosis für die Fluoroskopie und die digitale Subtraktions-Angiographie (DSA) wurde zwischen den Angiographiegeräten der ersten bzw. zweiten Generation verglichen. Zu den besonderen Merkmalen des Systems der zweiten Generation- im Vergleich zum System der ersten Generation - gehörten ein verfeinertes kristallines Detektorsystem, zur verbesserten Rauschunterdrückung und eine fortschrittliche CARE-Filtersoftware, zur Senkung der Strahlendosis. Die Strahlendosis wurde mit einer herkömmlichen im Gerät verbauten Ionisationskammer gemessen. Die Bildqualität wurde von drei unabhängigen Radiologen anhand einer 5-Punkt-Likert-Skala bewertet. Beide Gruppen waren in Bezug auf Anzahl und Lage der Läsionen sowie Körpergewicht, BMI-Werte und anatomische Varianten der versorgenden Leberarterien vergleichbar (alle p > 0,05).
Das Dosisflächenprodukt (DAP) für die Fluoroskopie war in Gruppe 2 signifikant niedriger (1,4 ± 1,1 Gy·cm2) als in Gruppe 1 (2,8 ± 3,4 Gy·cm2; p = 0,001). Für DSA war DAP in Gruppe 2 (2,2 ± 1,2 Gy·cm2) signifikant niedriger (p = 0,003) gegenüber Gruppe 1 (4,7 ± 2,3 Gy·cm2). Die Ergebnisse für die DSA-Bildqualität (IQ) zeigten signifikante Verbesserungen für Gruppe 2 um 30% im Vergleich zu Gruppe 1 (p = 0,004). In der Fluoroskopie waren die Werte für den IQ in Gruppe 2 76% höher als in Gruppe 1 (p = 0,001). Eine gutes bis sehr gutes Inter-rater-agreement mit Kappa- Fleiss-Koeffizienten von κ = 0,75 für Gruppe 1 und κ = 0,74 für Gruppe 2 wurde erreicht.
Zusammenfassend ließ sich feststellen, dass die neueste Generation der robotergestützten Angiographiegeräte im Zusammenhang von cTACE der Leber eine erhebliche Reduzierung der Strahlendosis bei gleichzeitiger Verbesserung der Bildqualität in der Fluoroskopie und DSA-Bildführung ermöglicht.
Objectives: To evaluate the predictive value of volumetric bone mineral density (BMD) assessment of the lumbar spine derived from phantomless dual-energy CT (DECT)-based volumetric material decomposition as an indicator for the 2-year occurrence risk of osteoporosis-associated fractures. Methods: L1 of 92 patients (46 men, 46 women; mean age, 64 years, range, 19–103 years) who had undergone third-generation dual-source DECT between 01/2016 and 12/2018 was retrospectively analyzed. For phantomless BMD assessment, dedicated DECT postprocessing software using material decomposition was applied. Digital files of all patients were sighted for 2 years following DECT to obtain the incidence of osteoporotic fractures. Receiver operating characteristic (ROC) analysis was used to calculate cut-off values and logistic regression models were used to determine associations of BMD, sex, and age with the occurrence of osteoporotic fractures. Results: A DECT-derived BMD cut-off of 93.70 mg/cm3 yielded 85.45% sensitivity and 89.19% specificity for the prediction to sustain one or more osteoporosis-associated fractures within 2 years after BMD measurement. DECT-derived BMD was significantly associated with the occurrence of new fractures (odds ratio of 0.8710, 95% CI, 0.091–0.9375, p < .001), indicating a protective effect of increased DECT-derived BMD values. Overall AUC was 0.9373 (CI, 0.867–0.977, p < .001) for the differentiation of patients who sustained osteoporosis-associated fractures within 2 years of BMD assessment. Conclusions: Retrospective DECT-based volumetric BMD assessment can accurately predict the 2-year risk to sustain an osteoporosis-associated fracture in at-risk patients without requiring a calibration phantom. Lower DECT-based BMD values are strongly associated with an increased risk to sustain fragility fractures.
Key Points: Dual-energy CT–derived assessment of bone mineral density can identify patients at risk to sustain osteoporosis-associated fractures with a sensitivity of 85.45% and a specificity of 89.19%. The DECT-derived BMD threshold for identification of at-risk patients lies above the American College of Radiology (ACR) QCT guidelines for the identification of osteoporosis (93.70 mg/cm 3 vs 80 mg/cm 3 ).
Objectives: To investigate the diagnostic accuracy of color-coded contrast-enhanced dual-energy CT virtual noncalcium (VNCa) reconstructions for the assessment of lumbar disk herniation compared to unenhanced VNCa imaging.
Methods: A total of 91 patients were retrospectively evaluated (65 years ± 16; 43 women) who had undergone third-generation dual-source dual-energy CT and 3.0-T MRI within an examination interval up to 3 weeks between November 2019 and December 2020. Eight weeks after assessing unenhanced color-coded VNCa reconstructions for the presence and degree of lumbar disk herniation, corresponding contrast-enhanced portal venous phase color-coded VNCa reconstructions were independently analyzed by the same five radiologists. MRI series were additionally analyzed by one highly experienced musculoskeletal radiologist and served as reference standard.
Results: MRI depicted 210 herniated lumbar disks in 91 patients. VNCa reconstructions derived from contrast-enhanced CT scans showed similar high overall sensitivity (93% vs 95%), specificity (94% vs 95%), and accuracy (94% vs 95%) for the assessment of lumbar disk herniation compared to unenhanced VNCa images (all p > .05). Interrater agreement in VNCa imaging was excellent for both, unenhanced and contrast-enhanced CT (κ = 0.84 vs κ = 0.86; p > .05). Moreover, ratings for diagnostic confidence, image quality, and noise differed not significantly between unenhanced and contrast-enhanced VNCa series (all p > .05).
Conclusions: Color-coded VNCa reconstructions derived from contrast-enhanced dual-energy CT yield similar diagnostic accuracy for the depiction of lumbar disk herniation compared to unenhanced VNCa imaging and therefore may improve opportunistic retrospective lumbar disk herniation assessment, particularly in case of staging CT examinations.
Key Points
• Color-coded dual-source dual-energy CT virtual noncalcium (VNCa) reconstructions derived from portal venous phase yield similar high diagnostic accuracy for the assessment of lumbar disk herniation compared to unenhanced VNCa CT series (94% vs 95%) with MRI serving as a standard of reference.
• Diagnostic confidence, image quality, and noise levels differ not significantly between unenhanced and contrast-enhanced portal venous phase VNCa dual-energy CT series.
• Dual-source dual-energy CT might have the potential to improve opportunistic retrospective lumbar disk herniation assessment in CT examinations performed for other indications through reconstruction of VNCa images.
Vaccination represents one of the fundamentals in the fight against SARS-CoV-2. Myocarditis has been reported as a rare but possible adverse consequence of different vaccines, and its clinical presentation can range from mild symptoms to acute heart failure. We report a case of a 29-year-old man who presented with fever and retrosternal pain after receiving SARS-CoV-2 vaccine. Cardiac magnetic resonance imaging and laboratory data revealed typical findings of acute myocarditis.
Case report of rare congenital cardiovascular anomalies associated with truncus arteriosus type 2
(2022)
Truncus arteriosus (TA) is a very rare congenital anomaly with complex cardiovascular anatomy and high lethality also due to severe associated anatomical variants and pathologies. As TA has a massive impact on the survival of a newborn and usually has to be surgically treated. Thus, it is of high importance to understand this congenital cardiovascular disease and associated complications, to improve life expectancy and outcome of these patients. We recently came across a newborn female patient with a rare complex case of persistent TA type 2 associated with further complex cardiovascular anomalies, who received a contrast enhanced CT scan on the 3 rd day post-partum, showing complex cardiovascular abnormalities that were ultimately incompatible with life.
Background: Dual-source dual-energy computed tomography (DECT) offers the potential for opportunistic osteoporosis screening by enabling phantomless bone mineral density (BMD) quantification. This study sought to assess the accuracy and precision of volumetric BMD measurement using dual-source DECT in comparison to quantitative CT (QCT). Methods: A validated spine phantom consisting of three lumbar vertebra equivalents with 50 (L1), 100 (L2), and 200 mg/cm3 (L3) calcium hydroxyapatite (HA) concentrations was scanned employing third-generation dual-source DECT and QCT. While BMD assessment based on QCT required an additional standardised bone density calibration phantom, the DECT technique operated by using a dedicated postprocessing software based on material decomposition without requiring calibration phantoms. Accuracy and precision of both modalities were compared by calculating measurement errors. In addition, correlation and agreement analyses were performed using Pearson correlation, linear regression, and Bland-Altman plots. Results: DECT-derived BMD values differed significantly from those obtained by QCT (p < 0.001) and were found to be closer to true HA concentrations. Relative measurement errors were significantly smaller for DECT in comparison to QCT (L1, 0.94% versus 9.68%; L2, 0.28% versus 5.74%; L3, 0.24% versus 3.67%, respectively). DECT demonstrated better BMD measurement repeatability compared to QCT (coefficient of variance < 4.29% for DECT, < 6.74% for QCT). Both methods correlated well to each other (r = 0.9993; 95% confidence interval 0.9984–0.9997; p < 0.001) and revealed substantial agreement in Bland-Altman plots. Conclusions: Phantomless dual-source DECT-based BMD assessment of lumbar vertebra equivalents using material decomposition showed higher diagnostic accuracy compared to QCT.
In context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), patients with certain comorbidities and high age, as well as male sex are considered to represent the risk group for severe course of disease. Corona-virus disease 2019 (COVID-19) typical CT-patterns include bilateral, peripheral ground glass opacity (GGO), septal thickening, bronchiectasis, consolidation as well as associated pleural effusion. We report a 77-year-old heart transplanted patient with confirmed COVID-19 infection and coronary heart disease, diabetes type II and other risk factors. Notably, only slight clinical symptoms were reported and repeated computed tomography (CT) scans showed an atypical course of CT findings during his hospitalization.
Highlights
• Assessment of coronary artery plaque burden according to the CAC-DRS Score correlated well with pulmonary involvement of SARS-CoV-2 pneumonia (min. r=0.81, 95% CI 0.76 to 0.86).
• Visual and quantitative CAC-DRS Score of coronary artery plaque burden provided independent prognostic information on all-cause mortality in patients with SARS-CoV-2 pneumonia (p=0.0016 and p<0.0001, respectively).
• Incorporating CAC-DRS Score and pulmonary involvement into clinical decision making revealed great potential to discriminate patients with fatal outcomes from a mild course of disease (AUC 0.938, 95% CI 0.89 to 0.97) and the need for intensive care treatment (AUC 0.801, 95% CI 0.77 to 0.83).
Purpose: To assess and correlate pulmonary involvement and outcome of SARS-CoV-2 pneumonia with the degree of coronary plaque burden based on the CAC-DRS classification (Coronary Artery Calcium Data and Reporting System).
Methods: This retrospective study included 142 patients with confirmed SARS-CoV-2 pneumonia (58 ± 16 years; 57 women) who underwent non-contrast CT between January 2020 and August 2021 and were followed up for 129 ± 72 days. One experienced blinded radiologist analyzed CT series for the presence and extent of calcified plaque burden according to the visual and quantitative HU-based CAC-DRS Score. Pulmonary involvement was automatically evaluated with a dedicated software prototype by another two experienced radiologists and expressed as Opacity Score.
Results: CAC-DRS Scores derived from visual and quantitative image evaluation correlated well with the Opacity Score (r=0.81, 95% CI 0.76-0.86, and r=0.83, 95% CI 0.77-0.89, respectively; p<0.0001) with higher correlation in severe than in mild stage SARS-CoV-2 pneumonia (p<0.0001). Combined, CAC-DRS and Opacity Scores revealed great potential to discriminate fatal outcomes from a mild course of disease (AUC 0.938, 95% CI 0.89-0.97), and the need for intensive care treatment (AUC 0.801, 95% CI 0.77-0.83). Visual and quantitative CAC-DRS Scores provided independent prognostic information on all-cause mortality (p=0.0016 and p<0.0001, respectively), both in univariate and multivariate analysis.
Conclusions: Coronary plaque burden is strongly correlated to pulmonary involvement, adverse outcome, and death due to respiratory failure in patients with SARS-CoV-2 pneumonia, offering great potential to identify individuals at high risk.