Refine
Document Type
- Article (3)
- Preprint (2)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Apoptosis (1)
- Feasibility (1)
- Gene expression (1)
- Gene regulation (1)
- Manatee invariant (1)
- Mathematical model (1)
- NF-κB pathway (1)
- Necrotic cell death (1)
- Petri net (1)
- Phosphorylation (1)
Institute
Mathematical modeling of the molecular switch of TNFR1-mediated signaling pathways using Petri nets
(2021)
The paper describes a mathematical model of the molecular switch of cell survival, apoptosis, and necroptosis in cellular signaling pathways initiated by tumor necrosis factor 1. Based on experimental findings in the current literature, we constructed a Petri net model in terms of detailed molecular reactions for the molecular players, protein complexes, post-translational modifications, and cross talk. The model comprises 118 biochemical entities, 130 reactions, and 299 connecting edges. Applying Petri net analysis techniques, we found 279 pathways describing complete signal flows from receptor activation to cellular response, representing the combinatorial diversity of functional pathways.120 pathways steered the cell to survival, whereas 58 and 35 pathways led to apoptosis and necroptosis, respectively. For 65 pathways, the triggered response was not deterministic, leading to multiple possible outcomes. Based on the Petri net, we investigated the detailed in silico knockout behavior and identified important checkpoints of the TNFR1 signaling pathway in terms of ubiquitination within complex I and the gene expression dependent on NF-κB, which controls the caspase activity in complex II and apoptosis induction.
isiKnock is a new software that automatically conducts in silico knockouts for mathematical models of biochemical pathways. The software allows for the prediction of the behavior of biological systems after single or multiple knockout. The implemented algorithm applies transition invariants and the novel concept of Manatee invariants. A knockout matrix visualizes the results. The tool enables the analysis of dependencies, for example, in signal flows from the receptor activation to the cell response at steady state.
Biologische Signalwege bilden komplexe Netzwerke aus, um die Zellantwort sensibel regulieren zu können. Systembiologische Ansätze werden eingesetzt, um biologische Systeme anhand von Computer-gestützten Modellen zu untersuchen. Ein mathematisches Modell erlaubt, neben der logischen Erfassung der Regulation des biologischen Systems, die systemweite Simulation des dynamischen Verhaltens und Analyse der Robustheit und Anfälligkeit.
Der TNFR1-vermittelte Signalweg reguliert essenzielle Zellvorgänge wie Entzündungsantworten,
Proliferation und Zelltod. TNFR1 wird von dem Zytokin TNF-α stimuliert und fördert daraufhin die Bildung verschiedener makromolekularer Komplexe, welche unterschiedliche Zellantworten einleiten, von der Aktivierung des Transkriptionsfaktors NF-κB, welcher die Expression von proliferationsfördernden Genen reguliert, bis zu zwei Formen des Zelltods, der Apoptose und der Nekroptose. Die Regulation der verschiedenen Zellantworten wird auch als molekularer Schalter bezeichnet. Die exakten molekularen Vorgänge, welche die Zellantwort modulieren, sind noch nicht vollständig entschlüsselt. Eine Fehlregulation des Signalwegs kann chronische Entzündungen hervorrufen oder die Entstehung von Tumoren fördern.
In dieser Thesis haben wir die neuesten Erkenntnisse der Forschung des TNFR1-Signalwegs anhand von umfangreichen Interaktionsdaten aus der Literatur erstmals in einem Petrinetz-Modell erfasst und analysiert. Das manuell kuratierte Modell umfasst die sequenziellen Prozesse der NF-κB-Aktivierung, Apoptose und Nekroptose und berücksichtigt den Einfluss posttranslationaler Modifikationen.
Weiterhin wurden Analysemethoden für Signalwegs-Modelle entwickelt, welche die spezifischen Anforderungen dieser biologischen Systeme berücksichtigen und eine biologisch motivierte Netzwerkanalyse ermöglichen. Die Manatee-Invarianten identifizieren Signalflüsse im Gleichgewichtszustand in Modellen, die Zyklen aufweisen, und werden als Linearkombination von Transitions-Invarianten gebildet. Diese Signalflüsse erfassen idealerweise einen Prozess von der Rezeptorstimulation zur Zellantwort in einem Modell eines Signalwegs. Die Bestimmung aller möglichen Signalflüsse in Modellen von Signalwegen ist eine notwendige Voraussetzung für weitere biologisch motivierte Analysen, wie die in silico-Knockout Analyse. Wir haben ebenfalls ein neues Konzept zur Untersuchung von in silico-Knockouts vorgestellt. Die Effekte der in silico-Knockouts auf einzelne Komplexe und Prozesse des Signalwegs werden in der in silico-Knockout-Matrix repräsentiert. Wir haben die Software-Anwendung isiKnock entwickelt, welche beide Konzepte kombiniert und eine systematische Knockout-Analyse von Petrinetz-Modellen unterstützt.
Das Petrinetz-Modell des TNFR1-Signalwegs wurde auf seine elementaren Eigenschaften geprüft und die etablierten Analysen wie Platz-Invarianten und Transitions-Invarianten durchgeführt. Hierbei konnten die Transitions-Invarianten nicht in allen Fällen komplette biologische Signalflüsse beschreiben. Wir haben ebenfalls die neu vorgestellten Methoden auf das Petrinetz-Modell angewandt. Anhand der Manatee-Invarianten konnten wir die zusammenhängenden Signalflüsse identifizieren und nach ihrem biologischen Ausgang klassifizieren sowie die Auswirkungen der Rückkopplungen untersuchen. Wir konnten zeigen, dass die survival-Antwort durch die Aktivierung von NF-κB am häufigsten auftritt, danach die Apoptose, gefolgt von der Nekroptose. Die alternativen Signalflüsse in Form der Manatee-Invarianten spiegeln die Robustheit des biologischen Systems wider. Wir führten eine ausgiebige in silico-Knockout-Analyse basierend auf den Manatee-Invarianten durch, um die Proteine des Signalwegs nach ihrem Einfluss einzustufen und zu gruppieren. Die Proteine des Komplex I wiesen hierbei den größten Einfluss auf, angeführt von der Rezeptorstimulation und RIP1. Wir betrachteten und diskutierten die Regulation des molekularen Schalters anhand der Knockout-Analyse von selektierten Proteinen und deren Auswirkung auf wichtige Komplexe im Modell. Wir identifizierten die Ubiquitinierung in Komplex I sowie die NF-κB-abhängige Genexpression als die wichtigen Kontrollpunkte des TNFR1-Signalwegs. In Komplex II ist die Regulation der Aktivierung der Caspase-Aktivität entscheidend.
Die umfangreiche Netzwerkanalyse basierend auf Manatee-Invarianten und systematischer in silico-Knockout-Analyse verifizierte das Petrinetz-Modell und erlaubte die Untersuchung der Robustheit und Anfälligkeit des Systems. Die neu entwickelten Methoden ermöglichen eine fundierte, biologisch relevante Untersuchung von in silico-Modellen von Signalwegen. Der systembiologische Ansatz unterstützt die Aufklärung der Regulation und Funktion des verflochtenen Netzwerks des TNFR1-Signalwegs.
Background: Signal transduction pathways are important cellular processes to maintain the cell’s integrity. Their imbalance can cause severe pathologies. As signal transduction pathways feature complex regulations, they form intertwined networks. Mathematical models aim to capture their regulatory logic and allow an unbiased analysis of robustness and vulnerability of the signaling network. Pathway detection is yet a challenge for the analysis of signaling networks in the field of systems biology. A rigorous mathematical formalism is lacking to identify all possible signal flows in a network model.
Results: In this paper, we introduce the concept of Manatee invariants for the analysis of signal transduction networks. We present an algorithm for the characterization of the combinatorial diversity of signal flows, e.g., from signal reception to cellular response. We demonstrate the concept for a small model of the TNFR1-mediated NF- κB signaling pathway. Manatee invariants reveal all possible signal flows in the network. Further, we show the application of Manatee invariants for in silico knockout experiments. Here, we illustrate the biological relevance of the concept.
Conclusions: The proposed mathematical framework reveals the entire variety of signal flows in models of signaling systems, including cyclic regulations. Thereby, Manatee invariants allow for the analysis of robustness and vulnerability of signaling networks. The application to further analyses such as for in silico knockout was shown. The new framework of Manatee invariants contributes to an advanced examination of signaling systems.
The degradation of cytosol-invading pathogens by autophagy, a process known as xenophagy, is an important mechanism of the innate immune system. Inside the host, Salmonella Typhimurium invades epithelial cells and resides within a specialized intracellular compartment, the Salmonella-containing vacuole. A fraction of these bacteria does not persist inside the vacuole and enters the host cytosol. Salmonella Typhimurium that invades the host cytosol becomes a target of the autophagy machinery for degradation. The xenophagy pathway has recently been discovered, and the exact molecular processes are not entirely characterized. Complete kinetic data for each molecular process is not available, so far. We developed a mathematical model of the xenophagy pathway to investigate this key defense mechanism. In this paper, we present a Petri net model of Salmonella xenophagy in epithelial cells. The model is based on functional information derived from literature data. It comprises the molecular mechanism of galectin-8-dependent and ubiquitin-dependent autophagy, including regulatory processes, like nutrient-dependent regulation of autophagy and TBK1-dependent activation of the autophagy receptor, OPTN. To model the activation of TBK1, we proposed a new mechanism of TBK1 activation, suggesting a spatial and temporal regulation of this process. Using standard Petri net analysis techniques, we found basic functional modules, which describe different pathways of the autophagic capture of Salmonella and reflect the basic dynamics of the system. To verify the model, we performed in silico knockout experiments. We introduced a new concept of knockout analysis to systematically compute and visualize the results, using an in silico knockout matrix. The results of the in silico knockout analyses were consistent with published experimental results and provide a basis for future investigations of the Salmonella xenophagy pathway.
Author Summary
Salmonellae are Gram-negative bacteria, which cause the majority of foodborne diseases worldwide. Serovars of Salmonella cause a broad range of diseases, ranging from diarrhea to typhoid fever in a variety of hosts. In the year 2010, Salmonella Typhi caused 7.6 million foodborne diseases and 52 000 deaths, and Salmonella enterica was responsible for 78.7 million diseases and 59 000 deaths. After invasion of Salmonella into host epithelial cells, a small fraction of Salmonella escapes from a specialized intracellular compartment and replicates inside the host cytosol. Xenophagy is a host defense mechanism to protect the host cell from cytosolic pathogens. Understanding how Salmonella is recognized and targeted for xenophagy is an important subject of current research. To the best of our knowledge, no mathematical model has been presented so far, describing the process of Salmonella Typhimurium xenophagy. Here, we present a manually curated and mathematically verified theoretical model of Salmonella Typhimurium xenophagy in epithelial cells, which is consistent with the current state of knowledge. Our model reproduces literature data and postulates new hypotheses for future investigations.
The paper describes a mathematical model of the molecular switches of cell survival, apoptosis, and necroptosis in cellular signaling pathways initiated by tumor necrosis factor 1. Based on experimental findings in the literature, we constructed a Petri net model based on detailed molecular reactions of the molecular players, protein complexes, post-translational modifications, and cross talk. The model comprises 118 biochemical entities, 130 reactions, and 299 edges. We verified the model by evaluating invariant properties of the system at steady state and by in silico knockout analysis. Applying Petri net analysis techniques, we found 279 pathways, which describe signal flows from receptor activation to cellular response, representing the combinatorial diversity of functional pathways.120 pathways steered the cell to survival, whereas 58 and 35 pathways led to apoptosis and necroptosis, respectively. For 65 pathways, the triggered response was not deterministic and led to multiple possible outcomes. We investigated the in silico knockout behavior and identified important checkpoints of the TNFR1 signaling pathway in terms of ubiquitination within complex I and the gene expression dependent on NF-κB, which controls the caspase activity in complex II and apoptosis induction. Despite not knowing enough kinetic data of sufficient quality, we estimated system’s dynamics using a discrete, semi-quantitative Petri net model.