Refine
Year of publication
Document Type
- Article (355)
- Preprint (302)
- Part of Periodical (1)
Language
- English (658)
Has Fulltext
- yes (658)
Is part of the Bibliography
- no (658)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (586)
- Frankfurt Institute for Advanced Studies (FIAS) (70)
- Informatik (1)
The Born cross sections for the process e+e−→η′π+π− at different center-of-mass energies between 2.00 and 3.08 GeV are reported with improved precision from an analysis of data samples collected with the BESIII detector operating at the BEPCII storage ring. An obvious structure is observed in the Born cross section line shape. Fit as a Breit-Wigner resonance, it has a statistical significance of 6.3σ and a mass and width of M=(2111±43±25)~MeV/c2 and Γ=(135±34±30)~MeV, where the uncertainties are statistical and systematic, respectively. These measured resonance parameters agree with the measurements of BABAR in e+e−→η′π+π− and BESIII in e+e−→ωπ0 within two standard deviations.
Using data taken at 23 center-of-mass energies between 4.0 and 4.6 GeV with the BESIII detector at the BEPCII collider and with a total integrated luminosity of approximately 15 fb−1, the process e+e−→2(pp¯) is studied for the first time. The Born cross sections for e+e−→2(pp¯) are measured, and no significant structure is observed in the lineshape. The baryon pair (pp and p¯p¯) invariant mass spectra are consistent with phase space, therefore no hexaquark or di-baryon state is found.
Using data taken at 23 center-of-mass energies between 4.0 and 4.6 GeV with the BESIII detector at the BEPCII collider and with a total integrated luminosity of approximately 15 fb−1, the process e+e−→2(pp¯) is studied for the first time. The Born cross sections for e+e−→2(pp¯) are measured, and no significant structure is observed in the lineshape. The baryon pair (pp and p¯p¯) invariant mass spectra are consistent with phase space, therefore no hexaquark or di-baryon state is found.
The Born cross sections for the process e+e−→η′π+π− at different center-of-mass energies between 2.00 and 3.08~GeV are reported with improved precision from an analysis of data samples collected with the BESIII detector operating at the BEPCII storage ring. An obvious structure is observed in the Born cross section line shape. Fit as a Breit-Wigner resonance, it has a statistical significance of 6.3σ and a mass and width of M=(2108±46±25)~MeV/c2 and Γ=(138±36±30)~MeV, where the uncertainties are statistical and systematic, respectively. These measured resonance parameters agree with the measurements of BABAR in e+e−→η′π+π− and BESIII in e+e−→ωπ0 within two standard deviations.
The Born cross sections for the process e+e−→η′π+π− at different center-of-mass energies between 2.00 and 3.08~GeV are reported with improved precision from an analysis of data samples collected with the BESIII detector operating at the BEPCII storage ring. An obvious structure is observed in the Born cross section line shape. Fit as a Breit-Wigner resonance, it has a statistical significance of 6.3σ and a mass and width of M=(2108±46±25)~MeV/c2 and Γ=(138±36±30)~MeV, where the uncertainties are statistical and systematic, respectively. These measured resonance parameters agree with the measurements of BABAR in e+e−→η′π+π− and BESIII in e+e−→ωπ0 within two standard deviations.
In Ref. [1] the BESIII collaboration published a cross section measurement of the process e+e− → π+π− in the energy range between 600 and 900 MeV. In this corrigendum, we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as aππ,LO μ (600 − 900 MeV) = (368.2 ± 1.5stat ± 3.3syst) × 10−10. The central values of the cross section measurement and of aππ,LO μ , as well as the systematic uncertainties remain unchanged.
The Born cross sections and effective form factors for process 𝑒+𝑒−→Ξ−¯Ξ+ are measured at eight center-of-mass energies between 2.644 and 3.080 GeV, using a total integrated luminosity of 363.9 pb−1 𝑒+𝑒− collision data collected with the BESIII detector at BEPCII. After performing a fit to the Born cross section of 𝑒+𝑒−→Ξ−¯Ξ+, no significant threshold effect is observed.
Using 2.93 fb−1 of 𝑒+𝑒− collision data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the first observation of the doubly Cabibbo-suppressed decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is reported. After removing decays that contain narrow intermediate resonances, including 𝐷+→𝐾+𝜂, 𝐷+→𝐾+𝜔, and 𝐷+→𝐾+𝜙, the branching fraction of the decay 𝐷+→𝐾+𝜋+𝜋−𝜋0 is measured to be (1.13±0.08stat±0.03syst)×10−3. The ratio of branching fractions of 𝐷+→𝐾+𝜋+𝜋−𝜋0 over 𝐷+→𝐾−𝜋+𝜋+𝜋0 is found to be (1.81±0.15)%, which corresponds to (6.28±0.52)tan4𝜃𝐶, where 𝜃𝐶 is the Cabibbo mixing angle. This ratio is significantly larger than the corresponding ratios for other doubly Cabibbo-suppressed decays. The asymmetry of the branching fractions of charge-conjugated decays 𝐷±→𝐾±𝜋±𝜋∓𝜋0 is also determined, and no evidence for 𝐶𝑃 violation is found. In addition, the first evidence for the 𝐷+→𝐾+𝜔 decay, with a statistical significance of 3.3𝜎, is presented and the branching fraction is measured to be ℬ(𝐷+→𝐾+𝜔) = (5.7+2.5−2.1stat±0.2syst)×10−5.
Using 2.93 fb−1 of 𝑒+𝑒− annihilation data collected at a center-of-mass energy √𝑠=3.773 GeV with the BESIII detector operating at the BEPCII collider, we search for the semileptonic 𝐷0(+) decays into a 𝑏1(1235)−(0) axial-vector meson for the first time. No significant signal is observed for either charge combination. The upper limits on the product branching fractions are ℬ𝐷0→𝑏1(1235)−𝑒+𝜈𝑒·ℬ𝑏1(1235) −→ 𝜔𝜋−<1.12×10−4 and ℬ𝐷+→𝑏1(1235)0𝑒+𝜈𝑒·ℬ𝑏1(1235)0→𝜔𝜋0<1.75×10−4 at the 90% confidence level.
The rare decay 𝜂′→𝜋+𝜋−𝑒+𝑒− is studied using a sample of 1.3×109 𝐽/𝜓 events collected with the BESIII detector at BEPCII in 2009 and 2012. The branching fraction is measured with improved precision to be (2.42±0.05stat±0.08syst)×10−3. Due to the inclusion of new data, this result supersedes the last BESIII result on this branching fraction. In addition, the 𝐶𝑃-violating asymmetry in the angle between the decay planes of the 𝜋+𝜋−-pair and the 𝑒+𝑒−-pair is investigated. A measurable value would indicate physics beyond the standard model; the result is 𝒜𝐶𝑃=(2.9±3.7stat±1.1syst)%, which is consistent with the standard model expectation of no 𝐶𝑃-violation. The precision is comparable to the asymmetry measurement in the 𝐾0𝐿→𝜋+𝜋−𝑒+𝑒− decay where the observed (14±2)% effect is driven by a standard model mechanism.